首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
赤霉素信号转导及其调控植物生长发育的研究进展   总被引:4,自引:0,他引:4  
赤霉素(Gibberellins或gibberellic acid,GA)是植物生长发育所必需的植物激素之一,调控植物生长发育的多个过程。近年来随着植物分子生物学和功能基因组学的发展,有关GA信号转导途径及其调控植物生长发育的研究取得了一系列的进展。综述了GA信号转导途径的关键组分,包括GA受体GIBBERELLIN INSENSITIVE DWARF1(GID1)蛋白、F-box蛋白(拟南芥中的SLEEPY1[SLY1]和水稻中的GIBBERELLIN INSENSITIVE DWARF2[GID2])及DELLA蛋白,阐述了GA去除DELLA蛋白阻遏作用的分子模型,同时探讨DELLA蛋白通过其互作蛋白整合其它激素及环境信号调控植物生长发育的作用机理。  相似文献   

2.
选育早熟高产的新品种是作物遗传育种研究的重要方向。氮素是植物生长发育不可或缺的大量元素,也是调控植物开花时间和种子产量最为重要的营养元素。硝酸根(NO3-)是植物获取氮素的主要来源。其作为营养物质和信号分子,通过转运、代谢和信号转导等多种方式参与调控植物开花和产量。对模式植物拟南芥、水稻和其他主要农作物中硝酸根调控植物早熟高产的分子机制进行了较为全面的概括和阐述,以期为合理利用氮肥、提高氮素利用效率和培育早熟高产作物新品种提供理论参考。  相似文献   

3.
植物氮素吸收与转运的研究进展   总被引:1,自引:0,他引:1  
钟开新  王亚琴 《广西植物》2011,31(3):414-417
氮素是植物生长发育所必须的基本营养元素,在植物生长发育和形态建成中起着重要作用.土壤中植物所利用的主要氮素形式是铵态氮和硝态氮,在进化过程中植物形成不同的吸收和转运铵态氮和硝态氮的分子机制.该文对植物吸收与转运氮素的生理学特征、分子机制及涉及的相关基因等研究进行概括性综述,为研究水稻中氮素吸收、转运相关基因提供理论基础...  相似文献   

4.
一氧化氮(nitric oxide,NO)是植物体内一种重要的信号分子,不仅对植物的生长发育具有重要的调控作用,而且在植物应答缺铁胁迫中同样扮演着关键角色。近年来,有关NO介导的植物缺铁响应调控机制研究取得了一系列重要进展。本文重点针对植物体内NO的合成及其信号转导途径在缺铁胁迫应答中的作用和NO与其他信号分子互作介导植物缺铁响应调控研究进行系统综述与展望,以加深NO在植物缺铁响应调控功能的认识。  相似文献   

5.
植物激素生长素参与调控植物生长发育的各个过程,包括胚胎发育、器官发生和向性运动等。植物通过协调生长素的合成代谢、极性运输以及信号转导来实现对不同生长发育过程的精准调控。生长素的功能依赖于其信号被感知后经由信号转导通路转换为下游复杂多样的反应。经典的生长素信号转导通路阐明了细胞核内从SCF~(TIR1/AFB)受体到Aux/IAA蛋白的泛素化降解最终通过ARF转录因子调控基因转录的完整生长素响应过程。该核内信号通路揭示了生长素转录调控生长发育的诸多分子机制,但植物生长发育调控过程中仍有许多生长素响应过程无法通过该经典信号通路解析。重点阐述生长素非经典信号通路的调控机制及其对植物生长发育的重要作用,并讨论和展望生长素非经典信号通路研究目前所面临的挑战以及研究前景。  相似文献   

6.
植物需要同时协调多种不同信号来调节整个生长发育过程。植物激素油菜素内酯(BR)和脱落酸(ABA)是其中发挥重要作用的两类主要内源信号,并且在种子萌发、植物抗逆等过程中存在着密切的交叉互作。随着BR和ABA信号通路中关键元件的不断解析,两者互作调控气孔运动、逆境响应、种子休眠与萌发、植物发育等过程的分子机制研究取得显著进展。本文综述了近年来有关BR和ABA的功能、信号转导通路以及两者互作分子机制的最新进展。  相似文献   

7.
魏华  王岩  刘宝辉  王雷 《植物学报》2018,53(4):456-467
作为植物细胞内部的授时机制, 生物钟系统主要包括信号输入、核心振荡器和信号输出3个主要部分。该系统通过感受外界光照和温度等环境因子的昼夜周期性变化动态, 协调植物生长发育、代谢与生理反应, 赋予植物对生存环境的适应性。植物生物钟系统的核心振荡器通过多层级调控复杂的下游信号转导网络来参与调节植物生长发育及对生物与非生物胁迫的适应性。该文概述了近年来生物钟核心振荡器及其调控植物生长发育过程诸方面的研究进展, 并初步提出了植物时间生物学研究领域一些亟待解决的科学问题, 以期为生物钟领域的研究成果在作物分子育种方面的利用提供理论借鉴。  相似文献   

8.
硝酸盐调控豆科植物与根瘤菌共生固氮的机制研究   总被引:1,自引:0,他引:1  
氮是植物生长发育所需的大量营养元素之一。硝态氮不仅可以被植物直接吸收利用,还可以作为重要的信号分子调控植物对氮素的响应、吸收、代谢相关基因的表达,从而影响植物的生长和发育。豆科植物可以通过与根瘤菌共生互作来获得生长所需的氮,但共生固氮是一个耗费植物能量的过程。当土壤中存在高浓度的氮素时,氮作为信号分子会影响共生固氮基因的功能从而抑制共生固氮过程。目前的研究表明,硝酸盐通过局部和系统的调控方式抑制共生固氮过程;结瘤自主调控(Autoregulation of nodulation,AON)和NLPs(NIN-like proteins)转录因子在硝酸盐抑制豆科植物根瘤形成中有着重要的作用。本文结合最近的研究进展,重点讨论NLPs转录因子和AON途径在硝酸盐抑制共生固氮过程的作用。  相似文献   

9.
氮是植物生长发育所必需的大量元素,参与植物体内各种代谢活动。硝态氮(NO_3~-)是植物可吸收利用的主要无机氮源。NO_3~-转运蛋白不仅介导植物正常生长发育过程中NO_3~-的吸收、转运和再利用,还参与调控植物对多种逆境的适应过程。结合最新报道,重点总结了近年来关于NO_3~-转运蛋白在植物适应低NO_3~-、低K+、盐、干旱及重金属镉等胁迫中的重要作用的研究进展,以期为今后进一步深入探究植物抗逆机理提供依据和参考。  相似文献   

10.
植物通过类受体激酶感知环境变化,产生相应的信号来调控机体生长发育。BAK1 (BRI1-associated kinase 1)是其中研究最深入的类受体激酶之一。它调控多种生理过程的信号转导,如植物生长发育、细胞死亡和植物免疫等。本文综述了BAK1作为模式识别受体的共受体以及信号转导的调控子,调控免疫信号识别和转导的机理。以期为深入研究BAK1基因家族在植物抗病反应中的作用,阐明植物免疫信号转导途径提供信息。  相似文献   

11.
Nitrogen (N) is an important nutrient and signal for plant growth and development. However, to date, our knowledge of how plants sense and transduce the N signals is very limited. To better understand the molecular mechanisms of plant N responses, we took two-dimensional gel-based proteomic and phosphoproteomic approaches to profile the proteins with abundance and phosphorylation state changes during nitrate deprivation and recovery in the model plant Arabidopsis thaliana. After 7-day-old seedlings were N-deprived for up to 48 h followed by 24 h recovery, a total of 170 and 38 proteins were identified with significant changes in abundance and phosphorylation state, respectively. Bioinformatic analyses implicate these proteins in diverse cellular processes including N and protein metabolisms, photosynthesis, cytoskeleton, redox homeostasis, and signal transduction. Functional studies of the selected nitrate-responsive proteins indicate that the proteasome regulatory subunit RPT5a and the cytoskeleton protein Tubulin alpha-6 (TUA6) play important roles in plant nitrate responses by regulating plant N use efficiency (NUE) and low nitrate-induced anthocyanin biosynthesis, respectively. In conclusion, our study provides novel insights into plant responses to nitrate at the proteome level, which are expected to be highly useful for dissecting the N response pathways in higher plants and for improving plant NUE.  相似文献   

12.
独角金内酯(strigolactone, SLs)是一类新型植物激素,在植物生长发育的进程中发挥多种重要功能,包括调控植物的分枝,促进种子的萌发,以及影响根系建成等。MAX2 (more axillary growth 2)是SL信号传导途径的关键调控因子,位于合成途径基因MAX1MAX3MAX4的下游,几乎影响独脚金内酯所控制的所有表型。近年来,MAX2多样化的功能逐步得到揭示,大量数据表明MAX2不仅仅是SL信号的重要组分,同时也参与SL和多种激素信号间的交叉互作,在植物生长发育的各个环节,以及抵御生物和非生物胁迫的反应中都发挥至关重要的作用,但具体调控机制还有待更加深入的研究。对目前已知的MAX2功能进行了总结和阐述,以期为全面揭示MAX2功能及其调控多种激素信号的交叉机制提供理论参考。  相似文献   

13.
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.  相似文献   

14.
脱落酸(ABA)是植物体内一种重要的激素分子,在调节植物生长发育和对环境适应的过程中发挥重要的信号作用。促分裂原活化蛋白激酶(MAPK)是一种广泛存在于真核生物中的信号转导途径,由环境胁迫、细胞因子、植物激素、生长因子等诱导,是植物细胞信号转导过程中的主要级联途径之一。已知许多蛋白激酶和蛋白磷酸酶参与了ABA信号途径,MAPKs作为ABA信号转导的下游组分发挥着重要的调节作用。本文就MAPK级联参与ABA信号转导途径的相关研究进展进行叙述,以便对MAPKs和ABA信号之间的交互作用(cross-talk)机制有更深入了解。  相似文献   

15.
Nitrogen assimilation in plants: current status and future prospects   总被引:1,自引:0,他引:1  
《遗传学报》2022,49(5):394-404
Nitrogen (N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoyl phosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops—rice, maize, and wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.  相似文献   

16.
The CAM (Crassulacean acid metabolism) succulent species Kalanchoe daigremontiana, K. tubiflora and Crassula argentea, and the succulent C3 species Peperomia obtusifolia, were cultivated in pure culture in open-air conditions under two different regimes of nitrogen and water supply. At specified intervals during the course of vegetative growth, biomass, nitrate reductase activity (NRA), nitrate concentration, and organic nitrogen concentration of whole plants were measured. After 100 days of cultivation the leaf conductance of Crassula and Peperomia was measured at intervals for the duration of a day. Behaviour of all four species was strongly influenced by the cultivation regime. This was apparent in terms of productivity and variable flucturations in NRA, nitrate concentration, and organic nitrogen concentration during the vegetative period. Increase in biomass was mostly connected with a decrease in all other investigated parameters, especially under conditions of water and/or nitrogen deficiency. The typical reaction of the CAM species Crassula to limited netrogen but adequate soil water was to reduce leaf conductance during light, whereas the C3 plant Peperomia increased conductance in comparison with plants having a nitrogen suppy. The NRA of all plant species was reduced by both soil nitrate deficiency and drought. The succulent plant species, which are specially adapted to drought, neither took up nor used nitrate when water was limited. This was particularly the case for the CAM species, but less so for the C3 Peperomia, which showed very high concentrations of nitrate and organic nitrogen, but low NRA and biomass gain. A formula was derived to express the nitrogen use efficiency (NUE) of the species, i.e. the ability of a plant to use nitrogen over a specific period of growth. NUE was shown to increase with age for the crassulacean species but to decrease for the C3 Peperomia. Furthermore, NUE varied with the different nutrient levels in a species-specific manner, with high values for NUE not necessarily coupled to high productivity, and with NUE of the C3 species generally higher than that of CAM species.  相似文献   

17.
《Trends in microbiology》2023,31(6):616-628
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant–microbe interactions and changes in plant physiology activated by signal transduction.  相似文献   

18.
蒋梦婷  渠慎春 《西北植物学报》2018,38(10):1952-1960
DELLA蛋白作为GA信号转导通路中起抑制作用的转录因子,是一类定位在核内的生长抑制蛋白,可以直接与植物体内关键转录因子的蛋白互作,进而在许多植物信号活动中发挥核心作用。该文对近年来国内外有关模式植物及果树、蔬菜、花卉、粮食作物等植物DELLA蛋白基因家族的鉴定、时空表达模式、蛋白结构、参与的GA信号转导机理、与光敏色素互作因子PIF及F box蛋白的互作及DELLA蛋白在植物种子萌发、形态建成、豆科植物根瘤菌共生、气孔关闭、植物抗逆反应等过程中的重要作用等方面的研究进展进行综述,并比较了DELLA蛋白基因家族在不同物种中的差异,对其今后的研究热点和方向进行了展望,为进一步探讨DELLA蛋白的功能提供信息。  相似文献   

19.
C3和C4植物的氮素利用机制   总被引:1,自引:0,他引:1  
张璐  何新华 《植物学报》2020,55(2):228-239
提高植物的氮素利用效率(NUE)不仅有利于保障全球粮食安全, 也是实现农业可持续发展的重要途径。近半个世纪以来, 植物氮素利用机理研究已取得重要进展, 但NUE的调控机制仍不明确, NUE的提高仍然十分有限。高等植物集光合碳素同化和氮素同化于一体, 只有碳氮代谢相互协调, 才能维持植物体内的碳氮平衡, 保证植物正常生长发育。由于C3和C4植物的光合氮素利用率(PNUE)存在差异, 对氮素的利用效率也会存在差异。为了更有效地提高作物的NUE, 须更全面地了解C3和C4植物对氮素吸收、转运、同化和信号转导等关键因子的功能和调控机制。此外, 面对大气CO2浓度增高和全球气候变暖条件下的植物碳氮同化及其机理的研究也不容忽视。该文综述了C3和C4植物氮素利用关键因素的差异及其调控机制, 并对提高C3禾本科作物氮素利用效率的遗传改良途径进行了展望。  相似文献   

20.
Improving the nitrogen (N) responsiveness of crops is crucial for food security and environmental sustainability, and breeding N use efficient (NUE) crops has to exploit genetic variation for this complex trait. We used reverse genetics to examine allelic variation in two N metabolism genes. In silico analysis of the genomes of 44 genetically diverse sorghum genotypes identified a nitrate reductase and a glutamate synthase gene that were under balancing selection in improved sorghum cultivars. We hypothesised that these genes are a potential source of differences in NUE, and selected parents and progeny of nested association mapping populations with different allelic combinations for these genes. Allelic variation was sourced from African (Macia) and Indian (ICSV754) genotypes that had been incorporated into the Australian elite parent R931945-2-2. Nine genotypes were grown for 30 days in a glasshouse and supplied with continuous limiting or replete N, or replete N for 27 days followed by 3 days of N starvation. Biomass, total N and nitrate contents were quantified together with gene expressions in leaves, stems and roots. Limiting N supply universally resulted in less shoot and root growth, increased root weight ratio and reduced tissue nitrate and total N concentrations. None of the tested genotypes exceeded growth or NUE of the elite parent R931945-2-2 indicating that the allelic combinations did not confer an advantage during early vegetative growth. Thus, the next steps for ascertaining potential effects on NUE include growing plants to maturity. We conclude that reverse genetics that take advantage of rapidly expanding genomic databases enable a systematic approach for developing N-efficient crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号