首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The rhizosphere microbiome and plant health   总被引:38,自引:0,他引:38  
The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.  相似文献   

2.
As the nerve-mediated signaling in animals, long-distance signaling in plants is a prerequisite for plants to be able to perceive environmental stimuli and initiate adaptive responses. While intracellular signal transduction has been attracting considerable attentions, studies on long-distance signaling in plants has been relatively overlooked. Stomatal movements are well recognized as a model system for studies on cellular signal transduction. It has been demonstrated that the stomatal movements may be frequently tuned by long-distance signaling under various environmental stimuli. Stomatal movements can not only respond to persistent stress stimuli but also respond to shock stress stimuli. Stomatal responses to drought stress situations may be best characterized in terms of interwoven networks of chemical signaling pathways playing predominant roles in these adaptive processes. In cases of shock stress stimuli, stomatal movements can be more sensitively regulated through the long-distance signaling but with distinctive patterns not observed for drought or other persistent stresses. Here, the fundamental characteristics of stomatal movements and associated long-distance signaling are reviewed and the implications for plant responses to environmental stresses are discussed.Key words: stomatal movement, long-distance signaling, environmental stresses, abscisic aci, pH signaling, hydraulic signaling, cytokinins, acetylcholine, heat-shock, electric signal  相似文献   

3.
植物在遭受外界逆境胁迫时,体内的信号传导系统能够感知、传递逆境胁迫信号,并引起各种生理生化反应以适应环境。植物蛋白激酶在信号感知、传导以及基因的表达调控中起重要的作用。蛋白激酶在信号传导过程的功能是磷酸化修饰目的蛋白,而磷酸化的实现需要蛋白质之间相互作用。本文从植物蛋白激酶的结构、分类、与激素信号传导之间的关系等方面进行了系统的阐述,对蛋白激酶介导的植物抗性与发育的最新研究进展进行了系统的总结,为解析蛋白激酶在植物生长发育中的抗逆机理提供依据。  相似文献   

4.
丛枝菌根真菌诱导植物信号物质研究进展   总被引:6,自引:1,他引:5  
丛枝菌根(AM)真菌侵染植物根系形成菌根共生体过程中能诱导植物合成多种信号物质,如水杨酸(SA)、茉莉酸(JA)、类黄酮、一氧化氮(NO)和过氧化氢(H2O2)等。这些信号分子的传导途径和作用机制备受关注。本文从AM真菌诱导植物信号物质的种类和数量入手,探讨这些信号分子在植物体内的传导途径、生理效应和可能的作用机制,旨在为研究AM真菌与植物之间的共生关系、功能与进化等提供依据。  相似文献   

5.
植物的先天免疫主要包括模式识别受体对保守的微生物病原相关分子模式的识别和抗病蛋白对效应蛋白的识别。植物与病原体互作过程中存在广泛的信号交流,信号分子在植物与病原体的互作攻防中发挥了重要的调控作用,决定了二者的竞争关系。当前,大量植物与病原体互作中的信号分子被定位和克隆,其作用方式被揭示。本文总结了这些信号分子及其在植物免疫过程中的作用机制,主要包括植物细胞表面的模式识别受体分子对病原相关分子模式的识别与应答,植物抗病蛋白对病原体效应蛋白的识别与应答,以及免疫反应下游相关信号分子及其在植物抗病中的作用。此外,本文对未来相关研究提出了展望。  相似文献   

6.
The review deals with the mechanisms of innate immunity in plants focusing on families of pattern-recognition receptors and incorporates recent data on complete sequencing of several plant genomes. Plant immune response involves several families of receptors, both membrane-bound and cytoplasmic ones, containing conservative leucine-rich repeats. The lack of adaptive immunity and the associated rearrangements in the immune receptor genes in plants is partly counterbalanced by genetically encoded mechanisms of specific immunity to particular pathogens. There is a certain similarity between intracellular signal transduction and effector mechanisms in plant and animal innate immune systems, although the latter are considerably more complex.  相似文献   

7.
During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phytohormone class. Here, to gain insight into this elaborate signaling system, we summarize current models of biosynthesis, trans-membrane transport, and long-distance translocation of cytokinins in higher plants.  相似文献   

8.
肖成斌  何凯 《西北植物学报》2020,40(7):1259-1266
作为植物体内一类关键的信号分子,硝态氮调控了植物生长发育过程中的一系列生物学过程。硝态氮及其信号直接影响着农作物的氮素利用率、产量和品质。因此,深入研究硝态氮信号转导是农业可持续发展的关键。近年来,随着植物分子遗传学、生物化学等学科的迅猛发展,科学家们已经在硝态氮信号的感知、传递以及长距离信号转导等方面取得了许多突破性进展,这将有助于深入了解硝态氮信号如何调控植物生长发育过程中的各个方面。该文综述了近年来国内外有关拟南芥硝态氮信号转导方面的最新研究进展,以期为构建高效利用氮肥的新型农作物提供理论依据。  相似文献   

9.
  • Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear.
  • In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, −10 °C and −25 °C using an LC–ESI–MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin.
  • GO analysis and enrichment of KEGG pathways in different metabolites showed that the ‘plant hormone signal transduction’ pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C.
  • Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
  相似文献   

10.
Recent outbreaks of vegetable-borne gastrointestinal illnesses across the globe demonstrate that human enteric pathogens can contaminate produce at any stage of production. Interactions of enterics with native plant-associated microbiota influence the microbiological safety of produce by affecting the attachment, persistence and proliferation of human pathogens on plants. Supermarket surveys have revealed that bacteria, but not fungi or mechanical damage, promote the growth of Salmonella enterica on produce. Field and laboratory studies have indicated that some plant pathogenic bacteria and fungi facilitate the entry and internalization of human pathogens in plants. Conversely, some phytobacteria, including those involved in biocontrol of plant diseases, significantly inhibit attachment and plant colonization by non-typhoidal Salmonella and enterovirulent Escherichia coli by producing antibiotics or competing for nutrients in the phyllosphere. In this review, we attempt to elucidate the mechanisms of interactions between human enteric pathogens and plant-associated microbiota, and describe how these interactions affect produce safety.  相似文献   

11.
The systemic induction of proteinase inhibitor genes in tomato plants is either mediated by fast electrical signals or alternatively by chemical messengers. In the present study we analyzed the pathway of the electrical signal. The question of which cell types are involved in this pathway of long-distance signaling within plants is still controversial. To identify these we inserted microelectrodes into the veins of tomato leaves (Lycopersicon esculentum Mill. cv. Moneymaker). A newly developed computer program and microcomputer interface enabled us to position these microelectrodes inside the vein with an accuracy of 1 μm. Due to this precision in positioning we were able to demonstrate that the pathway of the electrical signal is not restricted to a specific tissue type, e.g. the phloem. In particular, the entire vein contributes to the propagation of the electrical wave along the plant. Therefore, an apoplastic contribution to the long-distance signal transduction mechanism appears most likely. To furthermore investigate the involvement of cis-abscisic acid (ABA) in this long-distance signal transduction pathway, ABA-deficient tomato mutants (Lycopersicon esculentum cv. Sitiens) were used in comparison to the wild type. Significant differences between the membrane-potential relaxation kinetics of the wild type and the mutants could be detected. Wild-type tomato plants exhibited six characteristic classes of membrane-potential relaxation kinetics following heat treatment. In contrast, the ABA-deficient mutants were more restricted in terms of their relaxation upon heat stimulation. The responses in the membrane potential of all cells within a vein consisted of only three categories. In conclusion, ABA did not affect all cells within the vein in a similar manner. Single cells exhibited different response patterns to systemic heat application in the presence of ABA. Moreover, ABA had a pronounced effect on the resting potentials of individual cells within the veins of tomato. Received: 1 July 1997 / Accepted: 16 January 1998  相似文献   

12.
植物激素是由植物自身代谢产生的一类从产生部位移动到作用部位发挥调控功能的微量小分子有机物质,在植物生长发育、响应环境胁迫过程中起到关键作用.苔藓植物作为早期登陆的非维管植物,处于陆生植物进化早期的阶段,具有许多不同于维管植物的形态和生理特征.大部分苔藓中普遍存在8种主要的植物激素及其衍生物(包括ABA、JA、ET、SA...  相似文献   

13.
14.
Plant cell organelle proteomics in response to abiotic stress   总被引:2,自引:0,他引:2  
Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.  相似文献   

15.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

16.
姜骋  张曦  田晴  李莉 《植物研究》2020,40(4):583-592
克隆白桦BpbHLH112基因的编码序列,并进行生物信息学分析。通过实时荧光定量PCR技术分析该基因在不同胁迫处理下的表达模式,进一步克隆了BpbHLH112基因上游1 446 bp的启动子区域,序列分析表明,该区域含有多个逆境响应、激素响应以及信号转导等相关元件,通过构建BpbHLH112启动子片段融合GUS报告基因的表达载体并进行烟草瞬时转化,分析在不同胁迫处理条件下BpbHLH112启动子驱动GUS基因表达的活性,结果表明BpbHLH112启动子的表达能够被一些逆境胁迫因子诱导,本研究结果为深入研究BpbHLH112调控白桦应对非生物胁迫作用的分子机理提供了理论依据。  相似文献   

17.
脱落酸(ABA)是植物体内一种重要的激素分子,在调节植物生长发育和对环境适应的过程中发挥重要的信号作用。促分裂原活化蛋白激酶(MAPK)是一种广泛存在于真核生物中的信号转导途径,由环境胁迫、细胞因子、植物激素、生长因子等诱导,是植物细胞信号转导过程中的主要级联途径之一。已知许多蛋白激酶和蛋白磷酸酶参与了ABA信号途径,MAPKs作为ABA信号转导的下游组分发挥着重要的调节作用。本文就MAPK级联参与ABA信号转导途径的相关研究进展进行叙述,以便对MAPKs和ABA信号之间的交互作用(cross-talk)机制有更深入了解。  相似文献   

18.
张继红  陶能国 《广西植物》2015,35(6):935-941
蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而PP2C磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。迄今为止,在植物体内已经发现了4种PP2C蛋白磷酸酶。蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。大量研究表明,PP2Cs参与多条信号转导途径,包括PP2C参与ABA调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于Mg2+或Mn2+的浓度。植物PP2C蛋白的C端催化结构域高度保守,而N端功能各异。文中还综述了高等植物PP2C的分类、结构、ABA受体与PP2Cs蛋白互作、PP2C基因参与ABA信号途径以及其他逆境信号转导途径的研究进展。  相似文献   

19.
Endophytic nitrogen-fixing bacteria have been isolated from graminaceous plants such as maize, rice, and sugarcane. They are thought to promote plant growth, not only by fixing nitrogen, but also by the production of plant hormones. The molecular mechanisms involved in this interaction are not yet clear. In this work, the identification of a receptor-like kinase (RLK), named SHR5, which may participate in signal transduction involved in the establishment of plant-endophytic bacteria interaction is described for the first time. SHR5 seems to be part of a novel subclass of RLKs present in a wide range of plant species. The expression of this gene is down-regulated in sugarcane plants associated exclusively with beneficial endophytic bacteria and is not a general response caused by micro-organisms or abiotic stress. In addition, more successful sugarcane-endophytic bacteria associations have a more pronounced decrease in SHR5 expression, suggesting that SHR5 mRNA levels in plant cells are inversely related to the efficiency of the association.  相似文献   

20.
Small-molecule plant hormones principally control plant growth, development, differentiation, and environmental responses. Nine types of plant hormones are ubiquitous in angiosperms, and the molecular mechanisms of their hormone actions have been elucidated during the last two decades by genomic decoding of model plants with genetic mutants. In particular, the discovery of hormone receptors has greatly contributed to the understanding of signal transduction systems. The three-dimensional structure of the ligand–receptor complex has been determined for eight of the nine hormones by X-ray crystal structure analysis, and ligand perception mechanisms have been revealed at the atomic level. Collective research has revealed the molecular function of plant hormones that act as either molecular glue or an allosteric regulator for activation of receptors. In this review, we present an overview of the respective hormone signal transduction and describe the structural bases of ligand–receptor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号