首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
CMV与SP双启动子增强外源基因在小鼠骨骼肌中的表达效率   总被引:1,自引:0,他引:1  
构建分别含有CMV、肌肉特异启动子SP及双启动子CMV-SP的真核报告基因EGFP表达载体(pCMV-EGFP、pSP-EGFP及pCMV-SP-EGFP)和生长激素释放因子(GRF)表达载体(pCMV-GRF、pSP-GRF和pCMV-SP-GRF).将3种EGFP表达质粒分别注射至小鼠骨骼肌.注射后1周、2周、3周以及4周时,分别提取肌肉组织RNA,应用半定量RT-PCR检测报告基因(EGFP)的表达量,发现pCMV-SP-EGFP组EGFP表达量显著高于pCMV-EGFP组和pSP-EGFP组(P<0.01);经荧光检测得到了较强的荧光信号.将3种GRF表达质粒分别注射至小鼠骨骼肌,在注射后每10 d记录小鼠累积增重,采血并用RIA法测定血清胰岛素样生长因子Ⅰ(IGF-Ⅰ)浓度,结果pCMVSP-GRF组累积增重、IGF-I浓度分别高于生理盐水组、pCMV-GRF组和pSP-GRF组(P<0.05).结果表明:CMV与SP两种启动子组合,在小鼠骨骼肌内使外源基因表达效率提高.本研究为提高外源基因在肌肉组织的表达提供了新的途径.  相似文献   

2.
通过RTPCR方法扩增MAGE-3 cDNA,以pcDNA3.1+为载体,构建重组表达质粒pcDNA3-1/MAGE-3。重组质粒用脂质体转染鼠B16细胞,经RT-PCR、细胞免疫染色及免疫印迹法鉴定转化细胞中MAGE-3的表达。以100μg质粒剂量肌肉注射接种小鼠,间隔10天,共3次,以空载体和PBS为对照。结果,重组质粒免疫的小鼠,其脾淋巴细胞对MAGE-3阳性靶细胞的杀伤活性为51.08±7.41%,与空载体组(8.44±1.89%)及PBS组(5.76±1.75%)相比,差异有显著性(P<0.01),而对MAGE-3阴性靶细胞的杀伤活性分别为8.21±1.65%,7.68±1.56%和5.13±1.42%,其差异无显著性;MAGE-3 DNA疫苗组免疫血清1∶15稀释时能检测到抗MAGE-3抗体,脾细胞培养上清中Th1类细胞因子IFN-γ、IL-2水平明显升高,外周血中CD4+、CD8+T细胞也提高,小鼠肿瘤的生长速度明显减慢,与对照组相比,差异显著(P<0.01)。说明MAGE-3重组质粒免疫小鼠可以诱导小鼠产生特异性的体液和细胞免疫应答。  相似文献   

3.
为探讨不同种类小鼠卵透明带3(zp,)的免疫不育效果,并筛选高效且具有物种特异性的DNA抗生育疫苗,本研究选择草原兔尾鼠卵透明带3(Lzp3)和昆明白小鼠卵透明带3(Mzp3)构建不同的DNA抗生育疫苗表达载体,pcDNA3-mzp3(pcD-M)、pcDNA3-1zp3(pcD-L)、pcDNA3-aat-comp-mzp3(pcD-ACM)和pcDNA3-aat-comp-lzp3(pcD-ACL)分别免疫NIH小白鼠。研究中用水动力转染技术取代传统的Hela细胞真核转染检测小鼠体内真核表达情况.结果表明四种质粒均能在小鼠肝脏中进行表达;ELISA图示表明重组质粒均能使小鼠激发较高水平的特异性抗体;抗生育结果表明四种DNA疫苗均具有免疫不育的效果(P〈0.05),其中pcDNA3-aat-comp-mzp3(pcD-ACM)的免疫效果最好(P〈0.01);卵巢病理切片H.E染色结果显示pcD-M和pcD-L组卵巢结构与对照小鼠区别不大,而pcD-ACL和pcD-ACM组卵巢结构发生病理性变化。结果初步说明草原兔尾鼠和昆明白小鼠卵透明带3对NIH小白鼠均有抗生育效果,但不具有物种特异性。  相似文献   

4.
构建重组FN多肽CH50真核表达载体并在小鼠体内表达,研究其趋化与抗肿瘤作用.采用重组DNA技术构建表达质粒;体内进行基因转染,采用RT-PCR鉴定导入基因的表达;通过肝素亲和层析、SDS-PAGE和Western blot鉴定表达产物;腹腔细胞计数、Giemsa染色分析以及肌肉组织切片与染色观察体内基因转染后的趋化作用;小鼠黑色素瘤模型研究基因转染抑制肿瘤的作用.从CH50原核表达载体获得重组多肽的cDNA,5'端加上小鼠IFN-γ5'端非编码区和信号肽编码区的cDNA,3'端加上人FN cDNA的3'端非编码区;将重组cDNA插入pREP8质粒,即构建出pCH503质粒.巨噬细胞在体内经pCH503转染,然后在体外培养,能够产生CH50多肽.以pCH503分别进行腹腔基因转染和肌肉内基因转染,均可对免疫细胞产生趋化作用;pCH503体内转染可以使小鼠腹腔内黑色素肿瘤结节数降低50%~601.CH50真核表达载体pCH503可在小鼠体内表达,体内基因转染可趋化免疫细胞和抑制肿瘤结节形成,在肿瘤综合治疗中有重要意义.  相似文献   

5.
构建重组 FN多肽 CH50真核表达载体并在小鼠体内表达 ,研究其趋化与抗肿瘤作用 .采用重组 DNA技术构建表达质粒 ;体内进行基因转染 ,采用 RT- PCR鉴定导入基因的表达 ;通过肝素亲和层析、SDS- PAGE和 Western blot鉴定表达产物 ;腹腔细胞计数、Giemsa染色分析以及肌肉组织切片与染色观察体内基因转染后的趋化作用 ;小鼠黑色素瘤模型研究基因转染抑制肿瘤的作用 .从 CH50原核表达载体获得重组多肽的 c DNA,5′端加上小鼠 IFN- 5′端非编码区和信号肽编码区的 c DNA,3′端加上人 FN c DNA的 3′端非编码区 ;将重组 c DNA插入 p REP8质粒 ,即构建出p CH50 3质粒 .巨噬细胞在体内经 p CH50 3转染 ,然后在体外培养 ,能够产生 CH50多肽 .以p CH50 3分别进行腹腔基因转染和肌肉内基因转染 ,均可对免疫细胞产生趋化作用 ;p CH50 3体内转染可以使小鼠腹腔内黑色素肿瘤结节数降低 50 %~ 60 % . CH50真核表达载体 p CH50 3可在小鼠体内表达 ,体内基因转染可趋化免疫细胞和抑制肿瘤结节形成 ,在肿瘤综合治疗中有重要意义 .  相似文献   

6.
构建重组 FN多肽 CH50真核表达载体并在小鼠体内表达 ,研究其趋化与抗肿瘤作用 .采用重组 DNA技术构建表达质粒 ;体内进行基因转染 ,采用 RT- PCR鉴定导入基因的表达 ;通过肝素亲和层析、SDS- PAGE和 Western blot鉴定表达产物 ;腹腔细胞计数、Giemsa染色分析以及肌肉组织切片与染色观察体内基因转染后的趋化作用 ;小鼠黑色素瘤模型研究基因转染抑制肿瘤的作用 .从 CH50原核表达载体获得重组多肽的 c DNA,5′端加上小鼠 IFN- 5′端非编码区和信号肽编码区的 c DNA,3′端加上人 FN c DNA的 3′端非编码区 ;将重组 c DNA插入 p REP8质粒 ,即构建出p CH50 3质粒 .巨噬细胞在体内经 p CH50 3转染 ,然后在体外培养 ,能够产生 CH50多肽 .以p CH50 3分别进行腹腔基因转染和肌肉内基因转染 ,均可对免疫细胞产生趋化作用 ;p CH50 3体内转染可以使小鼠腹腔内黑色素肿瘤结节数降低 50 %~ 60 % . CH50真核表达载体 p CH50 3可在小鼠体内表达 ,体内基因转染可趋化免疫细胞和抑制肿瘤结节形成 ,在肿瘤综合治疗中有重要意义 .  相似文献   

7.
目的:构建骆驼蓬脂转移蛋白(lipid transfer protein from Peganum harmala,PhLTP)基因真核表达质粒,并探讨其对黑色素瘤B16细胞在体内外的抗肿瘤作用。方法:将PhLTP基因亚克隆至pcDNA3.1上,获得重组质粒pcDNA3.1-PhLTP;用脂质体转染法将重组质粒及空载体外转染B16细胞,MTT检测其对B16细胞生长的影响。建立B16荷瘤小鼠模型,设重组质粒(pcDNA3.1-PhLTP)、空载(pcDNA3.1)、生理盐水和阳性药物(CTX)组,分别处理小鼠后测量各组肿瘤体积并称瘤重,计算抑瘤率。光镜观察鼠脾、肝等组织变化;免疫组织化学法检测各瘤体中PhLTP、血管内皮生长因子(VEGF)及碱性成纤维细胞生长因子(bFGF)的表达。结果:pcDNA3.1-PhLTP转染B16细胞72 h后,细胞增殖能力明显受到抑制(P0.01)。注射pcDNA3.1-PhLTP组的小鼠肿瘤生长速度明显减慢,肿瘤体积小于空载和生理盐水组(P0.05)。显微镜下可见重组质粒组肿瘤细胞有不同程度的点、片状坏死,而肝、肺等无明显病理损伤。重组质粒组肿瘤组织中有PhLTP蛋白的表达,且VEGF和bFGF的阳性表达指数都低于空载和生理盐水组(P0.01)。结论:成功构建了重组表达质粒pcDNA3.1-PhLTP,体内外实验结果显示其能有效地抑制B16细胞的生长,预示了该重组质粒在治疗黑色素瘤中的潜在应用价值。  相似文献   

8.
目的构建人乳头瘤病毒l6型(HPV16)E6-E7融合蛋白真核表达载体,为研究其基因疫苗免疫活性奠定实验基础。方法 PCR扩增HPV16 E6-E7基因片段,将其连接到真核表达载体pcDNA3.1(+),构建真核表达载体pcDNA3.1(+)/HPV16 E6-E7,双酶切及测序鉴定。将质粒转染HeLa细胞,RT-PCR鉴定E6-E7基因在HeLa细胞中的表达。提取质粒免疫小鼠,利用免疫组化方法检测在其肌肉组织中的表达。结果成功构建了真核表达载体pcDNA3.1(+)/HPV16 E6-E7;在转染pcDNA3.1(+)/HPV16 E6-E7的细胞中检测到HPV16 E6-E7基因。在免疫该质粒的小鼠肌肉组织中可以检测到该质粒的蛋白表达。结论成功的构建的了真核表达载体pcDNA3.1(+)/HPV16 E6-E7,该载体能在HeLa细胞内以及小鼠骨骼肌细胞内有效表达。  相似文献   

9.
利用定点突变的原理,获得包含有口蹄疫病毒P1,2A,3C及部分2B编码区的目的基因片段,KpnⅠ和XbaⅠ双酶切后,定向克隆于真核表达质粒载体pcDNA3.1(+),经筛选、鉴定及DNA序列分析后,将重组质粒pcDNA3.1/P12X3C转染BHK-21细胞,通过双抗体夹心ELISA方法和间接免疫荧光标记方法,检测细胞中表达的口蹄疫病毒抗原。结果表明,口蹄疫病毒基因片段正确克隆到真核表达质粒载体上,重组质粒pcDNA3.1/P12X3C可在BHK-21细胞中表达FMDV目的蛋白。  相似文献   

10.
羊痘病毒P32基因真核表达载体的构建、表达及其免疫原性   总被引:5,自引:0,他引:5  
通过PCR方法扩增全长P32基因和截去跨膜区的P32基因(MP32),将其分别克隆到真核表达载体pcDNA3.1( )和已插入CpG序列的pcDNA3.1-CpG中,构建pcDNA3.1-P32、pcDNA3.1-CpG-P32和pcDNA3.1-CpG-MP32质粒;用脂质体法转染BHK-21细胞,通过间接免疫荧光(IFA)试验验证其表达效果;经肌肉免疫注射健康BALB/c小鼠,用间接ELISA法检测抗体;在免疫后的第3、5周取免疫小鼠的脾细胞,用流式细胞仪检测CD4 和CD8 T细胞亚群.结果所构建的真核表达载体在BHK-21细胞中都能表达P32蛋白;免疫小鼠血清在免疫第2周后均能检测到羊痘特异性IgG抗体;免疫组小鼠脾脏CD4 T细胞数目和CD4 /CD8 T细胞比值明显高于对照组.结果提示,所构建的真核载体可诱导小鼠产生特异性体液免疫应答,并能刺激小鼠产生较强的细胞免疫应答.  相似文献   

11.
Biodegradable nanospheres or microspheres have been widely used as a sustained release system for the delivery of bioagents. In the present study, injectable sustained-release growth hormone-releasing factor (GRF) (1-32) microspheres were prepared by a double emulsion-in liquid evaporation process using biodegradable polylactic-co-glycolic acid (PLGA) as the carrier. The entrapment efficiency was 89.79% and the mean particle size was 4.41 mum. The microspheres were injected into mouse tibialis muscle. After 30 days, mice injected with GRF (1-32) microspheres (group I) gained significantly more weight than any other treatment group, including mice injected with the naked plasmid (group II) (10.26 +/- 0.13 vs. 9.09 +/- 0.56; P < 0.05), a mixture of microspheres and plasmid (group III) (10.26 +/- 0.13 vs. 8.57 +/- 0.02; P < 0.05), or saline (IV) (10.26 +/- 0.13 vs. 6.47 +/- 0.26; P < 0.05). In addition, mice treated with the GRF (1-32) microspheres exhibited the highest expression levels of GRF as detected by PCR, RT-PCR, and ELISA (mean 2.56 +/- 0.40, P < 0.05, overall comparison of treatment with groups II, III, and IV). Additionally, rabbits were injected in the tibialis muscle with the same treatments described above. After 30 days, the group treated with GRF (1-32) microspheres gained the most weight. At day 30 postinjection, weight gain in group I was 63.93% higher than group II (plasmid) (877.10 +/- 24.42 vs. 535.05 +/- 26.38; P < 0.05), 108.59% higher than group III (blank MS) (877.10 +/- 24.42 vs. 420.50 +/- 19.39; P < 0.05), and 93.94% higher than group IV (saline) (877.10 +/- 24.42 vs. 452.25 +/- 27.38; P < 0.05). Furthermore, IGF-1 levels in the serum from GRF microsphere-treated group were elevated relative to all other groups. The present results suggest that encapsulation of GRF with PLGA increases GRF gene expression in muscle after local plasmid delivery, and stimulates significantly more weight gain than delivery of the naked plasmid alone.  相似文献   

12.
Biodegradable nanospheres or microspheres have been widely used as a sustained release system for the delivery of bioagents. In the present study, injectable sustained-release growth hormone-releasing factor (GRF) (1–32) microspheres were prepared by a double emulsion-in liquid evaporation process using biodegradable polylactic-co-glycolic acid (PLGA) as the carrier. The entrapment efficiency was 89.79% and the mean particle size was 4.41 μm. The microspheres were injected into mouse tibialis muscle. After 30 days, mice injected with GRF (1–32) microspheres (group I) gained significantly more weight than any other treatment group, including mice injected with the naked plasmid (group II) (10.26 ± 0.13 vs. 9.09 ± 0.56; P < 0.05), a mixture of microspheres and plasmid (group III) (10.26 ± 0.13 vs. 8.57 ± 0.02; P < 0.05), or saline (IV) (10.26 ± 0.13 vs. 6.47 ± 0.26; P < 0.05). In addition, mice treated with the GRF (1–32) microspheres exhibited the highest expression levels of GRF as detected by PCR, RT-PCR, and ELISA (mean 2.56 ± 0.40, P < 0.05, overall comparison of treatment with groups II, III, and IV). Additionally, rabbits were injected in the tibialis muscle with the same treatments described above. After 30 days, the group treated with GRF (1–32) microspheres gained the most weight. At day 30 postinjection, weight gain in group I was 63.93% higher than group II (plasmid) (877.10 ± 24.42 vs. 535.05 ± 26.38; P < 0.05), 108.59% higher than group III (blank MS) (877.10 ± 24.42 vs. 420.50 ± 19.39; P < 0.05), and 93.94% higher than group IV (saline) (877.10 ± 24.42 vs. 452.25 ± 27.38; P < 0.05). Furthermore, IGF-1 levels in the serum from GRF microsphere-treated group were elevated relative to all other groups. The present results suggest that encapsulation of GRF with PLGA increases GRF gene expression in muscle after local plasmid delivery, and stimulates significantly more weight gain than delivery of the naked plasmid alone.  相似文献   

13.
Human growth hormone-releasing factor, GRF(1-44)-NH2, was synthesized by trypsin catalyzed coupling of Leu-NH2 to Arg43 of the precursor, GRF(1-43)-OH, prepared by solid phase peptide synthesis. The semisynthetic GRF(1-44)-NH2 was fully characterized and showed full potency in the rat pituitary in vitro bioassay. Conversion to GRF(1-44)-NH2 was limited to 60-70% in both 75% v:v N,N'-dimethylacetamide and 95% v:v 1,4-butanediol due to competing transpeptidations at Arg41 and Arg38 generating [Leu42]-GRF(1-42)-NH2 and [Leu39]-GRF(1-39)-NH2 side-products, respectively. The rates of formation and yields of GRF(1-44)-NH2 versus pH, Leu-NH2 concentration, and solvent composition were also studied.  相似文献   

14.
PEGylation has been viewed as an effective means of overcoming the therapeutic restriction of growth hormone-releasing factor (1-29) (GRF(1-29)) due to its short biological lifetime caused by severe proteolysis and rapid glomerular filtration. Of three isomers according to the PEGylation sites (Tyr1, Lys12, or Lys21), PEGylated GRF(1-29) at Lys21-amine (Lys21-PEG-GRF(1-29)) was shown to have the highest bioactivity. In this report, we propose a unique two-step site-specific PEGylation method capable of producing only Lys21-PEG-GRF(1-29) with a single composition in high yield using a GRF(1-29) derivative protected at Tyr1 and Lys12 and remained available at Lys21 (FMOC1,12-GRF(1-29)). The first step of this reaction involved the PEG attachment to FMOC1,12-GRF(1-29), and the second step involved the removal of FMOC moieties. This PEGylation process was optimized at the following conditions: 0.2-0.3% (v/v) triethylamine concentration, 5.0-6.0-fold molar amount of PEG, reaction temperature of 25-45 degrees C, and reaction time of 30 min. Under these conditions, the maximum yield of Lys21-PEG-GRF(1-29) produced was ca. approximately 95%, 6.3-fold higher than that by nonspecific PEGylation at pH 8.5. Significantly, this site-specific Lys21-PEG-GRF(1-29) was found to have greatly increased resistance to rat plasma, liver, and kidney homogenates, with 7.0-, 25.4-, and 16.4-fold longer half-lives vs GRF(1-29), respectively. Furthermore, 125I-Lys21-PEG-GRF(1-29) displayed significantly reduced liver and kidney distributions and extended blood presence vs 125I-GRF(1-29) in rats. Due to these benefits, Lys21-PEG-GRF(1-29) displayed an enhanced initial growth hormone release in vivo despite having 15% remaining activity in vitro. This devised PEGylation method using an FMOC-protection/deprotection strategy would provide great usefulness for PEGylating bioactive peptides in terms of improved biological potency, elevated production yield, and a uniform composition.  相似文献   

15.
Previous studies have demonstrated that glucagon-superfamily peptides stimulate insulin release from the pancreatic islets in a glucose dependent manner. In this study we have carried out a structure-activity study of their insulinotropic activity using a rat pancreas perfusion with 5.5 mM glucose concentration. The following peptides were examined: glucagon-like peptide-1(7-36)amide (tGLP-1), glucagon, gastric inhibitory peptide (GIP), peptide having an amino-terminal histidine and carboxy-terminal isoleucine amide (PHI), vasoactive intestinal polypeptide (VIP), growth hormone releasing factor(1-29)amide (GRF), GRF(1-27)amide and synthetic hybrid-peptides of PHI-GRF, PHI(1-11)-GRF(12-27) and PHI(1-20)-GRF(21-27). Their potencies were evaluated as: tGLP-1 = GIP > glucagon > PHI = VIP > PHI(1-20)-GRF(21-27) > PHI(1-11)-GRF(12-27) > GRF(1-29) = GRF(1-27). It is clear that 0.1 nM tGLP-1 stimulated insulin release, whereas 1 microM GRF(1-29) did not. These results indicate that 1) in addition to N-terminal amino acid (histidine or tyrosine), position 4 (glycine), position 9 (aspartic acid) and position 11 (serine) in the amino acid sequence are important for their insulinotropic activity, 2) not only the N-terminal portion but also the C-terminal portion of these peptides contribute to their insulinotropic activity.  相似文献   

16.
A novel cyclic GRF analog, cyclo(Asp8-Lys12)-[Asp8,Ala15]-GRF(1-29)-NH2, i.e. cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2, was synthesized by the solid phase procedure and found to retain significant biological activity. Solid phase cyclization of Asp8 to Lys12 proceeded rapidly (approximately 2 h) using the BOP reagent. Substitution of Ala2 with D-Ala2 and/or NH2-terminal replacement (desNH2-Tyr1 or N-MeTyr1) in the cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 system resulted in highly potent analogs that were also active in vivo. Conformational analysis (circular dichroism and molecular dynamics calculations based on NOE-derived distance constraints) demonstrated that cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 contains a long alpha-helical segment even in aqueous solution. A series of cyclo8,12 stereoisomers containing D-Asp8 and/or D-Lys12 were prepared and also found to be highly potent and to retain significant alpha-helical conformation. The high biological activity of cyclo8,12[N-MeTyr1,D-Ala2,Asp8,Ala15]-GRF(1-29)- NH2 may be explained on the basis of retention of a preferred bioactive conformation.  相似文献   

17.
Recently, the use of a cancer deoxyribonucleic acid (DNA) vaccine encoding tumor-associated antigens has emerged as an immunotherapeutic strategy. In this study, we monitored tumor growth inhibition by pcDNA3-hMUC1 immunization in mice using optical imaging. To determine the anti-hMUC1-associated immune response generated by pcDNA3.1 or pcDNA3-hMUC1, we determined the concentration of interferon-gamma (IFN-gamma) protein and CD8+IFN-gamma cell numbers among lymphocytes from the draining lymph nodes of mice immunized with pcDNA3.1 or pcDNA3-hMUC1. After subcutaneously injecting CT26/hMUC1-Fluc into mice immunized with pcDNA3-hMUC1, we monitored in vivo tumor growth inhibition using an optical imaging method. The concentration of IFN-gamma protein in pcDNA3-hMUC1 was higher than that of the pcDNA3.1 group (2.7 < or = 0.08 ng/mL and 1.6 +/- 0.07 ng/mL, respectively, p < .001. The number of hMUC1-associated CD8+IFN-gamma cells in pcDNA3-hMUC1-immunized animals was 30-fold higher than in the pcDNA3.1 group. Bioluminescent images showed tumor growth inhibition in pcDNA3-hMUC1 immunized animals up to 25 days after immunization. A good correlation (r2 = .9076: pcDNA3/hMUC1 group; r2 = .7428: pcDNA3.1 group) was observed between bioluminescence signals and tumor weights in two mice in each group. We conclude that optical bioluminescent imaging offers a useful means of monitoring the antitumor effects of cancer DNA immunization in living animals.  相似文献   

18.
To improve animal growth, growth hormone-releasing hormone (GHRH) expression vectors that maintain constant GHRH expression can be directly injected into muscles. To deliver the GHRH expression vectors, biodegradable microspheres have been used as a sustained release system. Although administering GHRH through microspheres is a common practice, the intergenerational effects of this delivery system are unknown. To investigate the intergenerational effects of polylactic-co-glycolic acid (PLGA) encapsulated plasmid-mediated GHRH supplements, pCMV-Rep-GHRH microspheres were injected into pregnant mice. Growth and expression of GHRH were measured in the offspring. RT-PCR and immunohistochemistry reveal GHRH expression 3–21 days post-injection. The proportion of GH-positive cells in the GHRH treated offspring was 48.2% higher than in the control group (P < 0.01). The GHRH treated offspring were 6.15% (P < 0.05) larger than the control offspring. At day 49 post-injection, IGF-I serum levels were significantly higher in the treatment group than in the control group. This study confirms that intramuscular expression of GHRH mediated by PLGA microspheres significantly enhances intergenerational growth.  相似文献   

19.
The kinetics and selectivity of proteolysis of synthetic human growth hormone-releasing factor and analogs by purified human placental dipeptidyl peptidase IV (DPP IV) were studied by HPLC. The initial rates of Ala2-Asp3 cleavage (pH 7.8, 37 degrees C, So = 0.15 mM) were all approx. 5 mumol min-1 mg-1 for the parent hormone, GRF(1-44)-NH2, and the fragments, GRF(1-29)-NH2 and GRF(1-20)-NH2. Lower activities observed for GRF(1-11)-OH, GRF(1-3)-OH, and cyclic lactam analogs indicate S1'-Sn' binding. Assays of [Trp6]-GRF(1-29)-NH2 versus [D-Trp6]-GFR(1-29)-NH2 indicate an S4' binding cavity. Peptides with D-configuration at P2, P1 or P1' and desNH2Tyr1 and N-MeTyr1 analogs of GRF were not cleaved. Catalytic parameters for the P1-substituted analogs [X2,Ala15]-GRF(1-29)-NH2 were found to vary with X as follows, Km: Abu less than Ala less than Pro less than Val less than Ser less than Gly much less than Leu; kcat: Pro greater than Ala greater than Abu greater than Ser greater than Gly much greater than Leu greater than Val; kcat/Km: Abu greater than Pro greater than Ala much greater than Ser greater than Gly = Val much greater than Leu. Km is at a minimum and kcat/Km at a maximum, for a hydrophobic P1 side-chain of about 0.25 nm in length, i.e., the ethyl side-chain of alpha-aminobutyric acid (Abu) is very close to optimal. These results further define the S1 selectivity of DPP IV and may be useful in the design of DPP IV resistant GRF analogs that can be produced by recombinant DNA methods and the design of DPP IV inhibitors.  相似文献   

20.
The efficacy of an oral DNA vaccine carrying the Eimeria tenella 5401 antigen gene delivered by attenuated Salmonella typhimurium was examined in an experimental challenge study. The DNA vaccine preparation was made by transforming the recombinant plasmid pcDNA3-5401 into the attenuated S. typhimurium strain (Dam(-) and PhoP(-)) (designated hereafter as ZJ111/pcDNA3-5401). The chickens were randomly divided into six groups, 50 per group. Group A were given PBS as control. Chickens in group B were fed with 10(8) colony forming units (CFU) of attenuated S. typhimurium carrying pcDNA3. Group C were immunised with 100 microg of the recombinant 5401 protein via intramuscular injection. Groups D to F orally received ZJ111/pcDNA3-5401 at doses of 10(7), 10(8) and 10(9)CFU per chicken, respectively. All immunisations were boosted 2 weeks later. The immunised chickens were challenged with 6x10(4) homologous sporulated oocysts 14 days after the second immunisation. No significant differences in body weight were detected between the groups before immunisation and at week 4 after the booster immunisation. The ZJ111/pcDNA3-5401 was eventually eliminated from the spleen and liver on week 6 post-immunisation. The plasmid pcDNA3-5401 was stably maintained in over 80% of the attenuated S. typhimurium population after 100 generations of growth in antibiotic-free media. Oral immunisation of chickens with ZJ111/pcDNA3-5401 elicited specific humoral responses and stimulated proliferation of peripheral blood lymphocytes. The lymphocyte proliferation response was significantly higher in all vaccinated groups than in the control chickens. Antibody response was significantly lower in group C than in groups immunised with strain ZJ111/pcDNA3-5401. Vaccination with the strain ZJ111/pcDNA3-5401 at 10(8) (group E) and 10(9) (group F) CFU per chicken provided 55.0 and 57.5% protection against E. tenella challenge, respectively. These results have important implications for the development of DNA vaccines against avian coccidiosis by bacteria-vectored oral delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号