首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

2.
It has been proposed that the interaction between life–history attributes of different organisms and distrbance characteristics play an important role in determining the successional pattern following a disturbance event. We compared the responses of vascular plants and bryophytes (mosses and hepatics) to variation in disturbance size and severity in an old-growth boreal forest during a four–year period. The experiment included two patch sizes (0.25 and 2.5 m2) and two levels of severity: humus patches (removal of vegetation) and mineral soil patches (removal of both vegetation and humus layer). Treatments were chosen to reflect some aspects of disturbance by uprooting. Species richness was significantly affected by both disturbance size and severity but the response differed among plant groups. In vascular plants, species numbers were highest in humus patches while mosses were more numerous in mineral soil patches, the most severe disturbance. In contrast, severity had no effect on hepatics. Plant recovery was more rapid in bryophytes than in vascular plants. Species richness of bryophytes had exceeded that of adjacent, undisturbed vegetation after 2-3 yr. We attribute the contrasting response of the plant groups to differences in regeneration strategies. As a group, bryophytes had a greater variety of regeneration methods than vascular plants, with several types of asexual propagules and abundant production of spores in some species. In contrast, clonal ingrowth dominated in vascular plants while seedlings were rare. Thus, our analysis supports the view that plant response to patchy disturbance is strongly dependent on the interplay among disturbance traits and specific attribtites of different plant groups.  相似文献   

3.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

4.
Abstract. We compared vegetation establishment in 25 treefall pits and mounds along a hillside elevational gradient in a fourth-year catastrophic windthrow in eastern North America. Plant communities differed greatly between pits and mounds, with pit microsites having significantly greater species richness, total biomass, and total tree stem density. Species richness in pits and on mounds decreased with increasing elevation from the bottom of the hillside, although the effect of elevation on mound species richness was less than that of elevation on pit species richness. Biomass of Erechtites hieraciifolia decreased significantly, while that of Betula alleghaniensis increased significantly with elevation. However, total biomass of both pit and mound microsites was unrelated to elevation. Total stem density decreased with elevation in pits, but was unaffected by elevation on mounds. This study shows that both small-scale (microsite) effects and intermediate-scale effects influence the re-establishment of plant communities within this catastrophic windthrow. Consideration of both microsite and position along intermediate-scale gradients may allow more precise prediction of plant community composition and dynamics in recovery of disturbed areas.  相似文献   

5.
Earthen mounds are commonly used in ecological restoration to increase environmental heterogeneity, create favorable microclimates and retain soil resources that promote plant establishment. Although mounding is commonly employed in restoration, few microtopography studies focus on the long-term effects of mounding on restored plant community development. We assessed the vegetation and physical environment of earthen mounds installed at a novel grassland ten years after restoration to look for patterns in plant community development. We used permutational multiple analysis of variance (PERMANOVA) to identify differences in plant community composition and the associated mound-driven environmental variables, summer soil moisture and height above peak soil inundation, in relation to mound position. We used indicator species analysis (ISA) to classify the species that defined mound top and intermound space plant communities. We found that mound position drove plot height above flooding and soil moisture while plant community composition was driven by plot height above flooding, summer soil moisture, and mound position. ISA showed that species colonized mound microsites differently: most wetland species occurred between mounds and xeric stress tolerators largely occupied dry mound tops. We visualized these differences with non-metric multidimensional scaling (NMDS) ordination, finding that species sorted out in multivariate space based on mound position. We conclude that mounding can have relatively long-term effects on plant community development, even in highly disturbed, minimally maintained restoration projects.  相似文献   

6.
Treefall pits and mounds, formed when trees are uprooted by wind, influence an exceptionally broad range of phenomena in forests, having impacts on vegetation composition, soil formation, erosion, and soil respiration, among other processes. For example, treefall pits and mounds are known to have plant species composition with more pioneer species than nearby undisturbed soil; these microsites also are wetter (pits) or drier (mounds) than undisturbed soil; and have lower rates of soil respiration. Therefore, knowledge of the extent or coverage of these microsites will improve estimates of several processes as well as vegetation composition at the stand and landscape scale. Such information would be timely, given predictions of climate-change driven increases in severe weather that is the primary agent of pit and mound formation. However, to date, there have been no attempts to define a robust relationship to predict the sizes of these microsites across multiple forest types in eastern North America. Here, we summarize field measurement of the relationship between tree size and treefall pit and mound sizes, across ten catastrophic windthrow study sites. We find that for all ten sites pooled, simple ln–ln regression explains almost 54% of the variation in sizes of treefall pits (n = 1,039) and treefall mounds (n = 962) on the basis of tree diameter. This relationship spans numerous soil types, 31 tree species, and tree sizes ranging from 5 cm to greater than 105 cm diameter. Such a relationship may be coupled with information on the severity of disturbance (for example, proportion of stems uprooted) and pre-disturbance tree size structure, to provide a basis for predicting the area covered by pit and mound microsites at the landscape scale, and thereby a basis to frame expected impacts on soil formation, carbon cycling, vegetation establishment, and other ecological, edaphic, and biogeochemical processes.  相似文献   

7.
为研究高寒草甸大型土壤动物群落组成和分布对环境因子的响应,选取祁连山东段的甘肃省天祝县高原鼢鼠典型分布区域,以鼠丘密度代表干扰强度设置4个干扰区。调查各干扰区植被群落特征、土壤理化性质、大型土壤动物类群组成及其数量,采用约束性排序方法分析环境因子对大型土壤动物类群组成和分布的影响。结果表明:高原鼢鼠干扰下高寒草甸大型土壤动物优势类群为瓦娄蜗牛科、象甲科和短角亚目幼虫;极重度干扰区大型土壤动物类群的丰度、丰富度、Shannon指数显著高于重度干扰区(P<0.05);多元回归分析表明大型土壤动物类群丰度、丰富度和Shannon指数与土壤温度呈显著负相关(P<0.05),丰富度与土壤含水量呈显著负相关(P<0.05),丰度与土壤紧实度呈显著负相关(P<0.05),丰富度和Shannon指数与植物Shannon指数呈显著负相关(P<0.05);冗余分析和偏冗余分析表明,土壤温度、紧实度和含水量是影响高寒草甸大型土壤动物类群组成和分布的主要环境因子。  相似文献   

8.
A factorial field experiment was used to assess the influence of soil-disturber mammals in the structure of a 9-year-old Mediterranean annual plant community subjected to different sheep grazing and irrigation regimes. We estimated the disturbance rate (mound building activity) by Mediterranean voles, their effects on vegetation and the mechanisms of these effects during a period of vole outbreak. The effects on vegetation were analysed at the levels of species, functional groups and plant community. Disturbance rate was high and voles can disturb the entire soil surface once every four or five years. The availability of certain trophic resources (perennial plants) appeared to drive vole expansion in the experimental plots and it was independent of the irrigation and grazing treatments. Mound building activities largely affected vegetation but conserved plot differences. Total vegetation cover, absolute cover of all functional groups, mean vegetation height and species richness were less on mounds than on undisturbed ground. These effects did not change the relative abundance of annuals, perennials, grasses and forbs. Only the relative abundance of small-seeded species decreased on mounds. As the proportion of these seeds was similar in both types of patches, we suggest that small-seeded species had more difficulties for germinating or emerging when they are buried during mound formation. Irrigation and sheep grazing promoted large changes in the vegetation parameters but these effects were, in general, similar on mounds and undisturbed ground. Our results show that the availability of germinable seeds may be the major limitation for mound revegetation, probably due to the scarcity of seeds existing at the depths from which soils are excavated. Our results also suggested a resource limitation on mounds. The results provide additional evidence that soil disturbances by small herbivore mammals exert relevant ecological effects on abandoned Mediterranean croplands. We discuss the ecological implications of vole mound-building activities for plant succession, plant species conservation and forage resource availability for livestock. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

10.
This study aimed to (i) investigate the congruence among the species composition and diversity of bryophytes and vascular plants in forests; (ii) test if site prioritization for conservation aims by the maximization of the pooled number of vascular plant species is effective to maximize the pooled number of bryophyte species. The study was performed in six forests in Tuscany, Italy. Four-hundred and twenty vascular plant species (61 of which were woody) and 128 bryophyte species were recorded in 109 plots. Despite the good predictive value of the compositional patterns of both woody plants and total vascular with respect to the compositional pattern of bryophytes, the species richness of the latter was only marginally related to the species richness of the former two. Bryophyte rare species were not spatially related to rare plant species and neither coincided with the sites of highest plant species richness. The species accumulation curves of bryophytes behaved differently with respect to those of woody plants or total vascular plants. Reserve selection analysis based on the maximization of the pooled species richness of either woody plants or total vascular plants were not effective in maximizing the pooled species richness of bryophytes. This study indicates that species diversity of vascular plants is not likely to be a good indicator of the bryophyte species diversity in Mediterranean forests.  相似文献   

11.
Disturbances are important natural factors affecting biological diversity, community composition, and ecosystem structure. The European ground squirrel is a semi-fossorial organism, and through disturbances caused by burrowing activities, it can play an important role as an ecosystem engineer of grasslands in central and south-eastern Europe. The aim of this study was to assess the response of grassland vegetation to disturbances by the European ground squirrel. We conducted a pairwise survey within a 1-ha study site with homogenous environmental conditions. We compared the vegetation characteristics of 2?×?2-m plots placed on 30 mounds, with paired control plots situated at a distance of 10 m from each mound. The results showed that plots disturbed by the European ground squirrel achieved a higher species richness and diversity and a distinct species composition compared to the undisturbed control plots. Vertical structure of vegetation was also significantly different with a higher proportion of the high and medium vegetation layers on the mounds. Shifts in the composition of plant life forms and life strategies were reflected by the reduction of graminoids and plant competitors, and support of forbs on the mounds. These findings suggest that the European ground squirrel helps to maintain heterogeneity in grassland ecosystems and creates patches of higher diversity and higher structural complexity in the relatively homogenous grassland vegetation of the Western Carpathians.  相似文献   

12.
Abstract. We studied the effects of windthrow on the understory plant species composition of a pine forest (dominated by Pinus strobus) and an oak forest (dominated by Quercus ellipsoidalis). We recorded the presence of vascular plant species in randomly located quadrats in the two forests, and in three microsite types associated with tipup mounds (pit, old soil and new soil) in the pine forest at irregular intervals over the course of 14 years. The understories of the two forests remained distinct throughout the study. The frequency of occurrence of a number of forest floor species considerably increased; few species decreased. The disturbance specialists Rubus idaeus and Polygonum cilinode increased in frequency throughout the study in the pine forest, but are beginning to decline in the less disturbed oak forest. Annuals and biennials preferentially colonized the disturbed soil of microsites on tipups, and declined in frequency after about 7 yr. Both forests have increased in understory species richness, but have not changed substantially in the distribution of growth forms. Despite early differences in species composition, microsite types associated with tipup mounds became more similar through time. Although small in magnitude, there was a directional change in understory composition at both forests, with no apparent sign of a return to pre‐disturbance conditions.  相似文献   

13.
Our objective was to evaluate effects of disturbance size and soil texture on the development of microtopography for a shortgrass plant community in north central Colorado USA. Disturbances, defined as the death of individual plants, were created in 1984 and 1985 to evaluate development through time of the small-scale pattern of perennial bunchgrasses and bare soil openings that characterize this semiarid grassland. Disturbed plots of three sizes (50, 100, 150 cm-diameter) comparable in size to naturally-occurring disturbances were produced by killing plants at two sites differing in soil texture (sandy loam, clay loam). Disturbed plots were not manipulated after being created. In 1993, a laser surveying instrument was used to measure heights of crowns of individual plants of the dominant species, the perennial bunchgrass Bouteloua gracilis ([H.B.K.] Lag. ex Griffiths), and bare soil openings between plants for two locations: within each disturbance and in the surrounding undisturbed landscape.Differences between crown heights of plants and bare soil openings were comparable for both the undisturbed landscape and inside disturbances indicating that small-scale microtopography had recovered within nine years after disturbance occurred. However, complete recovery to the undisturbed state had not occurred since crown heights of plants relative to bare soil openings were significantly less on disturbed than undisturbed locations. Differences in height between plant crowns and bare soil openings on disturbed plots increased as disturbance size increased, indicating greater soil redistribution with increasing plot size. Larger differences in height were also found on plots on the fine- than the coarse-textured soil, indicating the importance of soil particle size and plant cover type to the development of microtopography. Differences in height between microsites on disturbed plots were positively related to total plant cover and negatively related to cover of B. gracilis indicating the importance of this species to reducing erosion on disturbed areas.In this semiarid grassland, patterns in microtopography were heterogeneous, likely as a result of the small-scale redistribution of soil between bare soil openings and B. gracilis plants through time. Our results indicate that this redistribution of soil is affected by disturbance size, soil texture, and patchy plant cover. The major effect of small-scale disturbances on patterns in microtopography of the shortgrass steppe are causing plant death and exposing soil to erosional and depositional processes.  相似文献   

14.
Biological soil crusts (BSCs) are comprised of soil particles, bacteria, cyanobacteria, green algae, microfungi, lichens, and bryophytes and confer many ecosystem services in arid and semiarid ecosystems worldwide, including the highly threatened California sage scrub (CSS). These services, which include stabilizing the soil surface, can be adversely affected when BSCs are disturbed. Using field and greenhouse experiments, we tested the hypothesis that mechanical disturbance of BSC increases emergence of exotic vascular plants in a coastal CSS ecosystem. At Whiting Ranch Wilderness Park in southern California, 22 plots were established and emergence of exotic and native plants was compared between disturbed and undisturbed subplots containing BSC. In a separate germination study, seed fate in disturbed BSC cores was compared to seed fate in undisturbed BSC cores for three exotic and three native species. In the field, disturbed BSCs had significantly (>3×) greater exotic plant emergence than in undisturbed BSC, particularly for annual grasses. Native species, however, showed no difference in emergence between disturbed and undisturbed BSC. Within the disturbed treatment, emergence of native plants was significantly, and three times less than that of exotic plants. In the germination study, seed fates for all species were significantly different between disturbed and undisturbed BSC cores. Exotic species had greater emergence in disturbed BSC, whereas native plants showed either no response or a positive response. This study demonstrates another critical ecosystem service of BSCs—the inhibition of exotic plant species—and underscores the importance of BSC conservation in this biodiversity hotspot and possibly in other aridland ecosystems.  相似文献   

15.
Plant species effects on ecosystem processes are mediated by traits such as litter quality and exudation. These same traits also influence the activity and distribution of animals that play key roles in regulating ecosystem dynamics. We planted monocultures of eight plant species commonly found in California grasslands to investigate the relative importance of plant species direct effects on nitrogen cycling, versus their indirect effects mediated by plant interactions with gophers. Plant species differed in their litter C:N ratio, which closely related to species effects on rates of net mineralization and nitrification in undisturbed soil. However, the effect of selective gopher disturbance on N cycling greatly altered these species effects.
Plant species differed in their effects on the type and timing of gopher disturbance. Small feeding holes were formed in late spring in plots containing species with high tissue quality. These feeding holes minimally disturbed the soil and did not alter N cycling rates over the short term. Large gopher mounds were formed in the winter and early spring, primarily in plots containing the grass, Aegilops triuncialis , and to a lesser extent in plots containing Avena barbata . These large mounds significantly disturbed the soil and greatly increased net nitrification rates, but had no consistent effects on net N mineralization. In undisturbed soil, Aegilops had the highest litter C:N ratio and one of the lowest rates of net nitrification. However, gophers preferentially built large mounds in Aegilops plots. Once the effects of gopher burrowing were considered, Aegilops had one of the highest rates of net nitrification, indicating that the indirect effects of plant species on N cycling can be more important than the direct effects alone. This experiment indicates that it is vital to consider interactions between plants and other organisms in order to predict the ecosystem effects of plant communities.  相似文献   

16.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

17.
This study examined the effects of burrow digging and habitation by the European badger (Meles meles) and the red fox (Vulpes vulpes) on soil properties and the plant community. The vegetation of control plots located in a similar but undisturbed habitat was compared with that of 18 burrow plots established at badger setts (N = 9) and fox dens (N = 9) in a lowland forest area in Poland. Soil physicochemical properties at different disturbance levels (mounds, intermounds and reference areas) were also investigated. The animals altered nutrient availability in the burrow plots considerably by excavating material from deep soil horizons that were less acidic and higher in K, Ca, Mg and available P but poorer in C and N. The effect was stronger for the badger, probably because it displaced larger amounts of material and disturbed wider areas. The activity of the two carnivores induced similar changes in plant communities. They increased herbaceous species richness and caused a shift in the herbaceous species composition: versus the control plots, the burrow plots contained more fugitive species (short-living plants typical for disturbed environments), among which ruderal forbs, including nutrient-demanding species, dominated. The carnivores also increased the species richness of fleshy-fruited shrubs and trees. The primary reason for this was probably not burrowing but endozoochorous seed dispersal. Overall, the results indicate that the badger setts and fox dens differ significantly from the forest matrix in terms of soil and vegetation parameters, and that they contribute to habitat heterogeneity and biological diversity.  相似文献   

18.
高原鼢鼠是三江源高寒草甸区域的主要啮齿动物之一.它啃食植物根系,挖掘大量通道,并将挖掘出的土壤堆积于地表,形成覆盖于植物地上部分的裸露土丘,对草地群落特征会产生不同程度的影响.本研究以高原鼢鼠土丘密度表示高原鼢鼠对草地的干扰程度,选取7个不同高原鼢鼠土丘密度的样地,同时选取没有遭受高原鼢鼠干扰的样地作为对照,获得各样地的物种信息及地上、地下生物量,探讨不同高原鼢鼠干扰强度对草地群落的物种组成、物种多样性及群落生产力的影响.结果表明: 随着高原鼢鼠土丘的增加,草地植物优势种群发生由以莎草科和禾本科植物为主向珠牙蓼、鹅绒委陵菜、西伯利亚蓼等杂类草植物为主的转变,群落盖度和高度显著降低;轻度或中度的高原鼢鼠干扰能够提高群落的物种多样性,而群落均匀度指数变化不显著;群落生产力不存在类似中度干扰假说的结果.随高原鼢鼠干扰活动的增强,群落地上、地下及总生物量显著降低,群落生产力大幅度降低.  相似文献   

19.
Abstract. Old-field plots used for a study of succession in Mediterranean France were revisited after 12–14 yr. Our aims were: (1) to verify if predicted patterns of species richness, turnover and composition are confirmed; (2) to compare the development in disturbed plots with that in undisturbed ones; (3) to discuss the impact of management changes. In undisturbed plots species richness and turnover decreased with successional age. Floristic composition changed in a way consistent with the predicted successional development in most plots. Therophytes decreased and phanerophytes increased; anemochorous species decreased and endozoochorous species increased, as expected. In plots disturbed since the first analysis richness decreased with successional age, but generally remained higher than in undisturbed plots. Floristic composition, species turnover and an increase in therophytes indicated changes towards younger successional stages. Thus, disturbance changed succession but not much. This is probably linked with the regeneration abilities typical of mediterranean species, e.g. resprouting. At the landscape scale, richness did not change and species turnover was low. The plots studied were situated in two distinct locations. One had not been disturbed between the two observation periods, while the other is a mosaic of undisturbed and disturbed sites. Observations fitted predictions much more closely at the undisturbed location. We conclude that permanent plot studies are powerful in identifying successional trends and can also provide additional insights into the effects of disturbance some of the mechanisms underlying the dynamics of diversity.  相似文献   

20.
To determine whether soil disturbance by digging and burrowing mammals altered community structure and the rate of succession in a midsuccessional abandoned pasture, species richness, composition and relative abundance were monitored over a two year period both on and off artificially created earth mounds (100, 900, 8100 cm2). Mean species richness increased by up to two species per small mound (100 cm2) and by up to four species per large mound (8100 cm2). However, increased species richness was evident for less than two years. Initially, up to sixteen of the twenty species present occurred more often on earth mounds than off mounds, with two of these species found only on large mounds (8100 cm2). After two years, there was little or no significant difference in species composition and relative frequency on and off earth mounds. Experimental soil disturbance temporarily altered community structure simply by increasing space available for colonization since light, nutrient and water supply did not increase significantly on mounds. Soil disturbance can increase species richness and change species' relative frequency in disturbances as small as 100 cm2 but such changes were likely too small and short lived to alter permanently the structure and rate of succession in the abandoned pasture studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号