首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
How adaptive is parasite species diversity?   总被引:1,自引:1,他引:0  
Has species diversity in parasites evolved as a by-product of adaptive diversification driven by competition for limited resources? Or is it a result of gradual genetic drift in isolation? One can move closer to answering these questions by evaluating the ubiquity of host switching, the key stage of adaptive diversification. Studies dealing with evolutionary role of host switching suggest that this process is extremely common in the wild, thus pointing at adaptive nature of parasite species diversity. However, most of these studies are focused on the evidence that may or may not have emerged as a consequence of host switching, – an approach potentially associated with a degree of uncertainty. After an overview of the data I am making an attempt to get a clearer view on host switching by focusing on factors that cause this phenomenon. In particular, I review theoretical work and field observations in order to identify the type of genetic host-use variance and the type of dispersal that underpin host switching. I show that host switching is likely to require generalist modifier alleles which increase the host range of individual genotypes and is likely to be promoted by wave-like patterns of dispersal. Both factors appear to be common in parasites. I conclude by outlining key areas for future research, including: (i) direct testing for divergence with gene flow, the main “footprint” of adaptive speciation; (ii) investigating the association between demography, dispersal potential and the potential to colonise novel habitats; and (iii) determining the genetic mechanisms underpinning host range variance in parasites.  相似文献   

3.
4.
There is a genuine need for consensus on a clear terminology in the study of species diversity given that the nature of the components of diversity is the subject of an ongoing debate and may be the key to understanding changes in ecosystem processes. A recent and thought-provoking paper (Jurasinski et al. Oecologia 159:15–26, 2009) draws attention to the lack of precision with which the terms alpha, beta, and gamma diversity are used and proposes three new terms in their place. While this valuable effort may improve our understanding of the different facets of species diversity, it still leaves us far from achieving a consistent terminology. As such, the conceptual contribution of these authors is limited and does little to elucidate the facets of species diversity. It is, however, a good starting point for an in-depth review of the available concepts and methods.  相似文献   

5.
Two conflicting hypotheses have been proposed to explain large‐scale species diversity patterns and dynamics. The unbounded hypothesis proposes that regional diversity depends only on time and diversification rate and increases without limit. The bounded hypothesis proposes that ecological constraints place upper limits on regional diversity and that diversity is usually close to its limit. Recent evidence from the fossil record, phylogenetic analysis, biogeography, and phenotypic disparity during lineage diversification suggests that diversity is constrained by ecological processes but that it is rarely asymptotic. Niche space is often unfilled or can be more finely subdivided and still permit coexistence, and new niche space is often created before ecological limits are reached. Damped increases in diversity over time are the prevalent pattern, suggesting the need for a new ‘damped increase hypothesis'. The damped increase hypothesis predicts that diversity generally increases through time but that its rate of increase is often slowed by ecological constraints. However, slowing due to niche limitation must be distinguished from other possible mechanisms creating similar patterns. These include sampling artifacts, the inability to detect extinctions or declines in clade diversity with some methods, the distorting effects of correlated speciation‐extinction dynamics, the likelihood that opportunities for allopatric speciation will vary in space and time, and the role of undetected natural enemies in reducing host ranges and thus slowing speciation rates. The taxonomic scope of regional diversity studies must be broadened to include all ecologically similar species so that ecological constraints may be accurately inferred. The damped increase hypothesis suggests that information on evolutionary processes such as time‐for‐speciation and intrinsic diversification rates as well as ecological factors will be required to explain why regional diversity varies among times, places and taxa.  相似文献   

6.
The two most important components of biodiversity, species diversity and genetic diversity, have generally been treated as separate topics, although a coordination between both components is believed to be critical for ecosystem stability and resilience. Based on a new trait concept that allows for the assessment of genetic diversity across species, the relationship between species diversity and genetic diversity was examined in eight forest tree communities composed of different tree genera including both climax and pioneer species. It was intended to check whether a trade-off exists between the two diversity components as was found in a few studies on animal species.Using several isozyme-gene systems as genetic markers, the genetic diversity across species within each of the tree communities was determined by two measures, the commonly used intraspecific genetic diversity averaged over species and the recently developed transspecific genetic diversity per species. Both data sets were compared with the corresponding community-specific species diversity resulting in a positive relationship between the two diversity components. A statistically significant positive correlation was established between the transspecific genetic diversity per species and the species diversity for three isozyme-gene systems. Beyond that, consistent results were obtained using different parameters of the diversity measure which characterize the total, the effective and the number of prevalent variants. The number of prevalent variants reflected most significantly the non-randomness of the observed diversity patterns.These findings can be explained by the observation that the pioneer tree species reveal a by far higher genetic diversity than the climax tree species, which means that an increase in species diversity, due to the addition of several pioneer species at the expense of one or two climax species, goes along with an increase in the level of genetic diversity. Forest tree communities with the highest degree of species diversity exhibit therefore the highest transspecific genetic diversity per species. This result was discussed with regard to the particular composition and stability of forest tree communities.  相似文献   

7.
Does species diversity limit productivity in natural grassland communities?   总被引:2,自引:0,他引:2  
Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity–productivity relationships. In this study, we evaluated diversity–productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity–productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity.  相似文献   

8.
How is diversity related to species turnover through time?   总被引:1,自引:0,他引:1  
Jonathan B. Shurin 《Oikos》2007,116(6):957-965
Empirical studies across a wide range of taxa show that the slopes of species–time relationships often decline as average species richness increases, indicating that more diverse communities have greater temporal stability in species composition. I explored potential explanations for this observation using two simple model formulations for species temporal dynamics. In the Abiotic model, species turnover is governed by the degree of heterogeneity in the environment and the range of species' tolerances. In this case, more variable conditions lead to lower species richness and higher turnover, but only if the distribution of species' niche widths and the size of the species pool are independent of the degree of environmental variability. The Biotic model represents direct effects of diversity on turnover through positive or negative feedbacks between diversity and species' colonization and extinction rates. Declining turnover with increasing richness occurred when higher diversity either facilitated colonization by new species or reduced extinction rates of extant species. Both models could produce the observed pattern of declining turnover at higher diversity under some circumstances, however the conditions for this outcome in the Abiotic model were restrictive and potentially unrealistic. The models provide a process-based framework for understanding the connection between diversity and species turnover through time.  相似文献   

9.
Recent empirical studies have found evidence of increased biomass production ('overyielding') in species mixtures relative to monoculture, but the interpretation of these results remains controversial, in part, because of the lack of a theoretical expectation. Here, we examined the expected frequency and stability of overyielding species mixtures using Lotka-Volterra models of species dynamics in two- and four-species systems in conjunction with community, population, and specific rate of biomass production (SRP) definitions of overyielding. Overyielding plant mixtures represented > 55% of potential species assemblages under community definitions and approximately 100% of species were either overyielding or underyielding under the population definition. Our species simulations approached their equilibria in 1-2 yr, supporting the relevancy of an equilibrial analysis. The range of parameter space that we explored produced realistic values of plot biomass, supporting their biological relevance. We show that overyielding is expected to be common under community definitions and population definitions. Overyielding, under community or population definitions, does not imply an actual increase in the specific rate of biomass production. In addition, assemblages of overyielding and underyielding species under all three definitions can be stable over time with underyielding species persisting in the presence of overyielding species.  相似文献   

10.
Different approaches for the assessment of biodiversity by means of remote sensing were developed over the last decades. A new approach, based on the spectral variation hypothesis, proposes that the spectral heterogeneity of a remotely sensed image is correlated with landscape structure and complexity which also reflects habitat heterogeneity which itself is known to enhance species diversity. In this context, previous studies only applied species richness as a measure of diversity. The aim of this paper was to analyze the relationship of richness and abundance-based diversity measures with spectral variability and compare the results at two scales. At three different test sites in Central Namibia, measures of vascular plant diversity was sampled at two scales – 100 m2 and 1000 m2. Hyperspectral remote sensing data were collected for the study sites and spectral variability, was calculated at plot level. Ordinary least square regression was used to test the relationship between species richness and the abundance-based Shannon Index and spectral variability. We found that Shannon Index permanently achieved better results at all test sites especially at 1000 m2, Even when all sites where pooled together, Shannon Index was still significantly related with spectral variability at 1000 m2. We suggest incorporating abundance-based diversity measures in studies of relationships between ecological and spectral variability. The contribution made by the high spectral and spatial resolution of the hyperspectral sensor is discussed.  相似文献   

11.
Gorelick R 《Oecologia》2011,167(4):885-888
There is no single best index that can be used to answer all questions about species diversity. Entropy-based diversity indices, including Hill’s indices, cannot account for geographical and phylogenetic structure. While a single diversity index arises if we impose several constraints—most notably that gamma diversity be completely decomposed into alpha and beta diversity—there are many ecological questions regarding species diversity for which it is counterproductive, requiring decomposability. Non-decomposable components of gamma diversity may quantify important intrinsic ecological properties, such as resilience or nestedness.  相似文献   

12.
The biodiversity of wetland ecosystems has received scant attention in Mongolia. We measured amphibian and macroinvertebrate species diversity at a complicated land–water ecotone of a pond within a wetland complex in Shaamar during July 2005. From our study area (0.5-ha grassland and an adjacent pond), we sampled 4,926 animals including 1 mammal, 4 amphibian, and 26 aquatic macroinvertebrate (>2 mm) species with a biomass of 4,444 g. Among these, a backswimmer (Notonectidae sp. 1) was a dominant species, representing 65% of the total number of animals collected (3,209) and 22% of the mass (999 g). Our study area was small but contained 4 amphibian species (Hyla japonica, Rana amurensis, Bufo raddei, and Salamandrella keyserlingii) in a mixed community with Shannon Diversity Index (H′) of 1.678 and Pielou’s Evenness Index (J′) of 1.211. No larvae or tadpoles of any amphibian species were found in the pond, indicating their early metamorphosis. H′ and J′ with 26 macroinvertebrate species were estimated to be 1.828 and 0.561, respectively. This suggests that low macroinvertebrate species diversity relative to high species richness is due to low evenness resulting from considerable numbers of a backswimmer. In 6 sites sampled in the pond, mean water pH revealed high alkalinity (range 9.01–10.45). The presence of our taxa in a highly alkaline environment indicates that they may be alkaliphilic.  相似文献   

13.
The presence of vines has been described as a distinctive feature of tropical forests. However, vine species diversity exhibits trends across environmental gradients that are not well documented. Here we use a latitudinal and a rainfall gradient along the Pacific slope of México to explore the influence of environmental factors on vine species diversity. A total of 630 vines species were detected on the Pacific slope of México. Tropical deciduous forest (TDF) floras were composed of greater percentages of vines (5–16%) than desert floras (1–3%). Four families (Convolvulaceae, Fabaceae, Cucurbitaceae and Asclepiadaceae) composed 40–60% of the vines of the region. Changes in vine composition were gradual along the Pacific slope. The percentage of vines in floras declines with latitude. Annual rainfall and the minimum temperature of January were significantly associated with the latitudinal decline in the percentage of vines. A total of 43 species, mostly herbaceous vines, were detected along a rainfall gradient in northwestern México. Along the rainfall gradient, the number of vine species increased from 3 to 28 as summer rainfall, plant cover and canopy stature increased. Vine species richness and diversity increased from the desert to the TDF, especially along streams. Leaf area (LA) ranged from 0.6 to 284cm2 and specific leaf area (SLA) from 80 to 904cm2/g among the most common vine species. Community averages of LA and SLA decreased toward drier sites. These results are discussed within the context of our current knowledge about the role of the environment in limiting the distribution of vines.  相似文献   

14.
15.
16.
The pattern of parasite species diversification and specialization, appreciated by host range, is investigated in fish parasites. We test whether host range is linked with phylogeny at a high taxonomic level, and if there is a relationship between host range and host species diversification. For this purpose we used two sets of data, one on macro-parasites of marine fishes of the Mediterranean Sea and the other on macro-parasites of marine and freshwater fishes of Canada. Similar patterns of host range among parasitic groups were found. Our findings suggest that habitat (marine vs freshwater) and geographic localization (Canada vs Mediterranean region) play little role in determining the observed patterns of host range. We highlight the potential influence of phylogeny (high-taxonomic level) on the level host range in parasites. We find that parasites with free-swimming larval stages and with direct life cycles have a narrower range of host species than do parasites with indirect life cycle, even if we cannot control for phylogenetic effects because of the lack of variation of life cycles within each parasitic group. Finally, a positive relationship was found between the number of known hosts and parasite species diversity in the case of Mediterranean parasite species. The relationship between host range and species diversification should be related to the mechanism of cospeciation.  相似文献   

17.
18.
The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°–42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns.  相似文献   

19.
Plant Ecology - Species–habitat associations can be used as a proxy for species niches. Previous research has shown that niche plasticity may increase diversity in plant communities, and that...  相似文献   

20.
Lipophosphoglycan is a prominent member of the phosphoglycan-containing surface glycoconjugates of Leishmania. Genetic tests enable confirmation of its role in parasite virulence and permit discrimination between the roles of lipophosphoglycan and related glycoconjugates. When two different lipophosphoglycan biosynthetic genes from Leishmania major were knocked out, there was a clear loss of virulence in several steps of the infectious cycle but, with Leishmania mexicana, no effect on virulence was found. This points to an unexpected diversity in the reliance of Leishmania species on virulence factors, a finding underscored by recent studies showing great diversity in the host response to Leishmania species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号