首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alba-Lynn C  Detling JK 《Oecologia》2008,157(2):269-278
Disturbances such as fire, grazing, and soil mixing by animals interact to shape vegetation in grassland ecosystems. Animal-generated disturbances are unique in that they arise from a suite of behaviors that are themselves subject to modification by external factors. The manner in which co-occurring animal taxa interact to alter vegetation is a function of their respective behaviors, which shape the characteristics (e.g., the magnitude or extent) of their disturbances. To determine whether prairie dogs (Cynomys ludovicianus) and harvester ants (Pogonomyrmex occidentalis) interactively alter vegetation structure and heterogeneity on the Colorado shortgrass steppe, we characterized the size, dispersion, and vegetation of prairie dog burrow mounds and ant nests (located on and off prairie dog colonies) and vegetation growing beyond mound and nest perimeters. Ants located on prairie dog colonies engineered significantly larger nests and disturbed nearly twice as much total soil area as their off-colony counterparts. Ant nests were overdispersed both on and off prairie dog colonies, while prairie dog mounds were randomly dispersed. Where harvester ants and prairie dogs co-occur, the overdispersed pattern of on-colony ant nests is in effect "overlaid" onto the random pattern of prairie dog mounds, resulting in a unique, aggregated pattern of soil disturbance. Ant nests on prairie dog colonies had significantly less vegetation and lower plant species diversity than did prairie dog mounds, while off-colony nests were similar to mounds. These results suggest that ant nests are more highly disturbed when located on prairie dog colonies. Beyond nests proper, ants did not appear to alter vegetation in a manner distinct from prairie dogs. As such, the interactive effects of prairie dogs and ants on vegetation arise mainly from the disturbance characteristics of mounds and nests proper.  相似文献   

2.
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target.Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.  相似文献   

3.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

4.
The soil seed bank can be an important source for vegetation regeneration, and data on the similarity between aboveground vegetation and the seed bank can provide information about successional pathways after disturbances or land-use change. We conducted this study in natural grasslands in the subtropical highland region in southern Brazil. We evaluated the effect of silviculture on richness, density, and composition of the seed bank at former grassland sites converted to pine plantations 25 years ago. We worked at six grassland sites and three pine plantation sites and used the seedling emergence method. Seed bank density and richness in grasslands were lower than those reported in similar environments in other regions. Species richness and density varied considerably within each vegetation type; therefore, richness and density were not statistically significant, while composition varied among vegetation types. In terms of species, the pine plantation seed bank was a small subset of the grassland seed bank. Seeds of typical grassland species were missing in the pine plantation, but also had only low abundances in the grassland, and similarity of seed bank and vegetation were low (less than 20%). The low seed density found in this study, including in grasslands areas, indicates that regeneration of species from the soil seed bank likely is of a limited role for the maintenance of plant populations after disturbances in this system. Our data further suggest that natural regeneration after tree planting in grasslands is reduced due to seed limitation.  相似文献   

5.
Ants (L. niger and L. flavus) build conspicuous mounds that are covered with vegetation. The aim of this study was to investigate whether the vegetation on ant mounds in semi-natural grasslands differed from that around the mounds. Another aim was to investigate whether the changes in the vegetation on ant mounds were influenced by grazing management or by habitat characteristics, semi-dry versus moist. Here, the total number of plant species and total plant cover were lower on ant mounds than in patches off-mound. The plant cover of perennials that form rosettes was twice as high on mounds inhabited by L. niger than on those inhabited by L. flavus. Only a few plant species were restricted to either ant mounds or adjacent field and the effects of ants on the plant diversity in semi-natural grasslands seemed to be low. Grazing management did not affect the differences in the vegetation on ant mounds and in equal-sized patches off-mound, whereas habitat characteristics affected ant-induced changes in vegetation cover of some plant species.  相似文献   

6.
The distribution of free-feeding insect herbivores in Brazilian savanna was studied in the National Park of Serra do Cipó. Insect samples were obtained with sweep nets across cerrado (savanna), rupestrian field and altitudinal grassland vegetation from 800 to 1500 m above sea level. We found a low species richness in xeric and mesic habitats during both wet and dry seasons. Sap-sucking insects were the most abundant guild (53.4%) with Cicadellidae the most abundant family (27.2%). The hypothesis that taxon richness of free-feeding insects decreases with increasing altitude was supported in xeric habitats during the wet season only, mainly as a function of mountain summit effect. There was a decrease of 65% in the number of families occurring at 1400 and 1500 m compared with lower elevations. The exclusion of sites of rupestrian vegetation at mid-elevations from the analysis increased significantly the proportion of variance explained by the model. An examination of taxon distribution using canonical variate analysis supported this result. The hypothesis that mesic habitats are richer in species of free-feeding insect herbivores than are xeric habitats was not supported. The data indicate that plant sclerophylly may exert a strong negative influence on insect species richness, and that variation due to particular characteristics of each site strongly affected the studied guilds. The present results should inform conservation strategies for the National Park Management Plan, which is currently being developed. © Rapid Science Ltd. 1998  相似文献   

7.
After abandonment, dry grassland (Festuco-Brometea) areas decline due to gradual overgrowing by woody species and the expansion of perennial tall grass species. Dry grassland vegetation was formed by extensive livestock grazing, thus grazing is considered one of the most natural methods for managing this type of vegetation. Six years after introducing low-intensity sheep and goat grazing in seven nature reserves in Prague (Czech Republic), the following impact of this management on dry grassland vegetation was observed: The cover of expansive woody species, particularly Ligustrum vulgare, and to a smaller extent Cornus sanguinea and Prunus spinosa declined. In addition, a significant, long-term declining trend of the expansive species Arrhenatherum elatius was also observed. Also the cover of Pimpinella saxifraga and Allium senescens declined significantly with regard to statistical evaluation. On the contrary, the cover of Achillea millefolium, Centaurea stoebe, Securigera varia, Elytrigia repens, Erysimum crepidifolium, Falcaria vulgaris, Fallopia convolvulus and Verbascum lychnitis increased. The cover of species characteristic of dry grasslands (Festuco-Brometea) increased significantly. No changes were observed in the number and cover of the Red List species. In addition, the presence of nitrophilous and ruderal species increased. Species diversity also significantly increased. From our findings we can conclude that managing dry grasslands with low-intensity grazing can help to keep dry grassland vegetation in good condition and conserve its plant diversity. Nomenclature: Kubát et al. (2002) for taxa and Moravec et al. (1995) for syntaxa.  相似文献   

8.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

9.
Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south‐eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red‐listed species showed a similar pattern. Plant species diversity and number of red‐listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and favour of target species.  相似文献   

10.
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi‐arid eastern Australia. Vegetation response was influenced by winter–spring drought after establishment of the experiments, but moderate rainfall followed in late summer–autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post‐fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once‐off nature of the treatment, and the high degree of natural movement and cracking in these shrink‐swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla‐ and Dichanthium‐dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).  相似文献   

11.
Increasing evidence suggests that past human activities have irreversibly changed soil properties and biodiversity patterns. In the White Carpathian Mts (Central-Eastern Europe), a mosaic of hyper-species-rich and species-rich patches have developed in a regularly mown dry grassland in the area of a glassworks abandoned in the eighteenth century. We tested whether and how anthropogenically changed soils affected the distribution of extraordinary species richness. Using magnetometry we detected former furnaces, workspace, waste deposit and unaffected surrounding grasslands and compared their vegetation and environmental conditions. Archaeological features, especially furnaces and waste deposits, showed a higher pH, higher soil concentrations of exchangeable phosphorus, manganese, lead and calcium, and higher productivity. Surrounding grassland showed higher iron and sodium concentrations in the soil, higher N:P ratio in the biomass and higher species richness. Moisture was uniformly lower in soils on archaeological features, where non-trivially a more ‘mesic’ vegetation in terms of European habitat classification occurred. Plant compositional variation was best explained by water-extractable phosphorus. Because nutrient-richer patches were not moister as common elsewhere, and because species richness was only poorly accounted for by productivity, the occurrence of a species-poor ‘mesic’ vegetation on archaeological features was evidently caused by a long-lasting phosphorus oversupply which favours a comparatively small species pool of rather recently arriving species. On the contrary, surrounding phosphorus-poorer grasslands still contain the ancient species pool whose extraordinary size determines the exceptional species richness of grasslands in the study region. Its maintenance or restoration demands a persistent phosphorus deficiency.  相似文献   

12.
The mound building ant Formica exsecta Nyl. is widely distributed in grassland ecosystems of the Central European Alps. We studied the impact of these ants on seed bank and vegetation patterns in a 11 ha subalpine grassland, where we counted over 700 active ant mounds. The mounds showed a distinct spatial distribution with most of them being located in tall‐grass, which was rarely visited by ungulates (red deer; Cervus elaphus L.). Heavily grazed short‐grass, in contrast, seemed to be completely avoided by ants as only few mounds were found in this vegetation type. The species composition of the ant mound and grassland seed banks was quite similar, i.e. from 15 common plant species 12 were found in both seed bank types. We found the same proportions of myrmecochorous seeds in ant mound and grassland soil samples. In contrast, the number of seeds was 15 times higher in mound compared with the grassland soil samples. Also, the vegetation growing on ant mounds significantly differed from the vegetation outside the mounds: graminoids dominated on ant mounds, herbaceous and myrmecochorous species in the grassland vegetation. We found significant continuous changes in vegetation composition on gradients from the ant mound centre to 1 m away from the mound edge. Overall, F. exsecta was found to have a considerable impact on seed bank and vegetation patterns in the grassland ecosystem studied. These insects not only altered grassland characteristics in the close surrounding of their mounds, but also seem to affect the entire ecosystem including, for example, the spatial use of the grassland by red deer.  相似文献   

13.
《Acta Oecologica》2005,27(1):57-66
Our main aim was to determine the contribution of the seed bank to vegetation regeneration following a disturbance consisting in a deep ploughing and a thorough homogenisation of a perennial grassland. In the seed bank prior to disturbance, seed distribution through the vertical soil profile was evaluated to determine the initial seed species structure. Then, several characteristics of the shallow seed bank and the extant vegetation were evaluated prior and following field disturbance: seed species composition and abundance, and species composition of the aboveground vegetation. The contribution of seed rain versus seed bank was evaluated by means of the comparison of the vegetation developed in plots filled with sterilised soil (seed bank removal) and the vegetation developed in non-sterilised plots in the field. The distribution of seeds through the profile indicated a sharp decline in abundance with depth, and it was probably linked to propagule morphology, with small and rounded seeds proner to being buried deeper than larger seeds. In the grassland prior to disturbance, the aboveground vegetation and seed bank species composition showed very low similarity index, most likely because during the 5 years following field abandonment, sheep pressure had caused a faster change in aboveground vegetation species composition than in seed bank species composition. Ploughing and homogenisation of the grassland led to low seed abundance in the shallow soil layer caused by dilution of the seed bank. Regardless of impoverishment in seed abundance and species richness, comparison between sterilised and non-sterilised plots showed that the seed bank acted as an effective source of colonising species and determined the aboveground species composition. To summarise, this study outlines the importance of considering several characteristics of the seed bank, such as species composition and seed abundance, in the understanding of the function of seed bank and dynamics of the vegetation following a deep ploughing and homogenisation treatment.  相似文献   

14.
Plains rough fescue (Festuca hallii), once dominant in grasslands of the Northern Great Plains, has been reduced to remnants mainly through agricultural and energy sector development. This study assessed the impacts of oil and gas well site disturbances on plains rough fescue grassland to predict successional trends following disturbance. We examined trends in vegetation cover, richness, diversity, and community composition for two construction techniques (topsoil stripping, minimum disturbance), three revegetation methods (agronomic seed mix, native seed mix, natural recovery), and two reclamation scenarios (reclaimed within < 10 yrs; reclaimed within > 10 yrs) relative to adjacent undisturbed prairie (reference sites) over 28 years in 33 grassland sites. Reclamation success was more closely related to methods of construction and revegetation than years since reclamation. Species richness, diversity, both native and non-native species cover, and species composition were similar between undisturbed prairie and areas subject to minimum disturbance and natural recovery. In contrast, undisturbed prairie differed from areas with topsoil stripping and seeding to either agronomic or native species. Plant community composition on minimum disturbance sites with natural recovery was returning to a predisturbed plains rough fescue community within 10 years after reclamation. Impacts of construction method that involved intensive soil handling and seeding with native or non-native seed mixes were disruptive to recovery of fescue grassland. We therefore recommend retaining grassland sod intact through minimum disturbance and utilizing natural recovery as the best option for successful reclamation of native rough fescue grassland after well site disturbance.  相似文献   

15.
Disturbances are important natural factors affecting biological diversity, community composition, and ecosystem structure. The European ground squirrel is a semi-fossorial organism, and through disturbances caused by burrowing activities, it can play an important role as an ecosystem engineer of grasslands in central and south-eastern Europe. The aim of this study was to assess the response of grassland vegetation to disturbances by the European ground squirrel. We conducted a pairwise survey within a 1-ha study site with homogenous environmental conditions. We compared the vegetation characteristics of 2?×?2-m plots placed on 30 mounds, with paired control plots situated at a distance of 10 m from each mound. The results showed that plots disturbed by the European ground squirrel achieved a higher species richness and diversity and a distinct species composition compared to the undisturbed control plots. Vertical structure of vegetation was also significantly different with a higher proportion of the high and medium vegetation layers on the mounds. Shifts in the composition of plant life forms and life strategies were reflected by the reduction of graminoids and plant competitors, and support of forbs on the mounds. These findings suggest that the European ground squirrel helps to maintain heterogeneity in grassland ecosystems and creates patches of higher diversity and higher structural complexity in the relatively homogenous grassland vegetation of the Western Carpathians.  相似文献   

16.
Abstract. The hypothesis that mole burrowing activity alters soil nutrient fluxes and that, as a response to the new conditions, a specialized guild of species develops on the molehills, was tested in an area located in the southwestern Spanish Pyrenees, on a spectrum of montane grassland communities that varies from xeric to temporally waterlogged. Evidence for an association between disturbance and nutrient availability was reported for nitrogen. Mole‐disturbed soils had elevated amounts of inorganic nitrogen compared to soils in surrounding pastures. At the first stages of mound revegetation, changes in nitrate flushes and in species competitive relationships following disturbance appeared to facilitate the establishment of ruderal and non‐mycorrhizal species. The diversity of the whole grassland was enhanced by the existence of these sets of species, abundant on mounds and rarer in the pasture. However, the difference was mainly quantitative, as exclusive colonizers of molehills were not found.  相似文献   

17.
Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of patch disturbances created by D. spectabilis mounds on ant assemblages in a Chihuahuan Desert grassland in southern New Mexico by using pitfall traps in a paired design (mound vs. matrix). Although the disturbances did not alter species richness or harbor unique ant communities relative to the matrix, they did alter species composition; the abundances of 6 of 26 species were affected. The disturbances might also act to disrupt spatial patterning of ants caused by other environmental gradients. In contrast to previous investigations of larger-scale disturbances, we detected no effects of the disturbances on ants at the functional-group level. Whether ant communities respond to disturbance at a functional-group or within-functional-group level may depend on the size and intensity of the disturbance. Useful functional-group schemes also may be scale-dependent, however, or species may respond idiosyncratically. Interactions between disturbance-generating mammals and ants may produce a nested spatial structure of patches. Received: 11 October 1999 / Accepted: 11 March 2000  相似文献   

18.
为探明热带森林蚂蚁巢穴的分布特征及其影响因素, 采用样方法研究了西双版纳不同演替阶段热带森林定居巢穴蚂蚁的种类及其巢穴的密度、盖度和空间分布特征, 并分析了土壤理化环境与蚂蚁种类总数、巢穴密度及盖度的相关性。结果表明, 不同演替阶段热带森林蚂蚁种类总数、巢穴的密度及盖度大小顺序为: 小果野芭蕉 (Musa acuminata)群落>白背桐(Mallotus paniculatus)群落>思茅崖豆(Mellettia leptobotrya)群落, 并且热带森林的演替类型显著影响蚂蚁种类总数及巢穴密度, 而对巢穴盖度的影响未达到显著水平; 蚂蚁种类总数、巢穴密度与土壤总有机碳和水解氮显著正相关, 与土壤容重和土壤含水率显著负相关, 但所选择的土壤理化指标与巢穴盖度的相关性均未达到显著水平; 蚂蚁巢穴的空间分布呈随机分布格局。我们的数据表明, 不同演替阶段热带森林所形成的植被类型及土壤环境状况共同影响定居的蚂蚁种类总数与筑巢密度。  相似文献   

19.
Abstract. Aim: Patterns of plant functional traits related to clonality (clonal growth modes; CGM) in plant communities were studied and hypotheses on the importance of the selected traits in plant communities supported by soils differing in moisture and nutrient status were tested. Material and Methods: Selected plant functional traits, such as the position of the mother‐daughter plants connections, length of spacers, frequency of multiplication, persistency of ramets connections, presence of storage organs and bud protection were studied in two contrasting plant communities (xeric and mesic abandoned pastures) typical of central Apennines, Italy. Results and Discussion: Clonality was shown to be of great importance in both mesic and xeric grasslands. The major differences between the two communities were due to the dominant CGMs: turf graminoids (having effective protection of growth meristems in dense tussocks) dominated xeric grasslands, while rhizomatous graminoids (typical of competitive resource‐rich environments) dominated mesic grasslands. Below‐ground CGOs (clonal growth organs), shorter spacers, higher multiplication potential, permanent ramet connection, large bud bank and increased importance of bud protection were found to be of importance in water stressed xeric grassland. Contrary to our expectations, the mesic (less stressed) grasslands have the higher number of clonal plants possessing storage organs.  相似文献   

20.
The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis–Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses, indicating that this proliferation of cryptogams has potentially high functional significance for situations where vegetation cover is depleted, particularly for reducing soil erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号