首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mazon H  Marcillat O  Forest E  Vial C 《Biochimie》2005,87(12):1101-1110
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).  相似文献   

2.
A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/2H data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances.  相似文献   

3.
This paper describes a method that substantially improves the sensitivity of high-performance liquid chromatography hydrogen exchange-mass spectrometry (HPLC HX MS). The success of this method relies on using a capillary HPLC column (0.1mm IDx5cmL) to increase the sensitivity of electrospray ionization, while keeping analysis times short to minimize hydrogen/deuterium (H/D) exchange. A small, immobilized pepsin column and a capillary C18 trap were included in the capillary HPLC MS system to provide rapid digestion, peptide concentration, and desalting while maintaining slow H/D exchange conditions. To minimize the analysis time, dead volumes and capacities of all components were optimized. Fully deuterated cytochrome c and its fully deuterated peptic peptides were used to evaluate deuterium recovery at amide linkages. The deuterium recovery measured at low flow rates using this system spanned a range of 66-77% (average of 71%), which was similar to the range measured for a much larger system (67-80%, average 75%). Signal levels of most peptides for the downsized system increased by about 100-fold compared with the signal for the larger system. These results greatly strengthen the HPLC HX MS technique for studies where the quantity of protein is small.  相似文献   

4.
The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from > 30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5–6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

5.
The use of plants as production hosts for recombinant glycoproteins, which is rapidly developing, requires methods for fast and reliable analysis of plant N-linked glycans. This study describes a simple small-scale method for the preparation of N-linked glycans from soluble plant protein and analysis thereof by matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Concentration and protease digestion of plant protein as well as deglycosylation is carried out in a single concentrator unit without the need for intermittent purification to minimize adsorptive loss and to facilitate handling. Plant protein is concentrated in a unit with a 5 kDa cutoff, and after buffer exchange, pepsin (EC 3.4.23.1) digestion is carried out in the concentrator overnight to obtain peptides as substrates for deglycosylation. Deglycosylation is carried out with peptide-N-glycosidase A (PNGase A; EC 3.5.1.52) for 24 h. Released N-glycans are purified using reverse-phase and cation exchange chromatography micro-columns for removal of peptides and desalting. N-Glycans are directly analyzed by MALDI-TOF MS without derivatization. The method for isolation of N-glycans is compatible with secreted proteins from cell culture supernatant as well as with soluble protein extracts from leaf tissue. As little as 5 μg of plant glycoprotein is sufficient for N-glycan preparation for MALDI-TOF MS analysis using this method.  相似文献   

6.
The direct linkage between folded structures of proteins and their function has increased the need for high resolution structures. In addition, there is a need for analytical methods for detecting and locating changes in the folded structures of proteins under a wide variety of conditions. The rates at which hydrogens located at peptide amide linkages undergo isotopic exchange has become the basis for an important method for detecting such structural changes. When detected by mass spectrometry, hydrogen exchange can be used to study dilute solutions of large proteins and protein complexes with very high sensitivity. To locate structural changes, labeled proteins are often digested with acid proteases to form peptides whose hydrogen/deuterium levels are determined by mass spectrometry. This approach is successful only when the protein can be digested rapidly under conditions where isotope exchange is slow. This study describes how columns packed with immobilized pepsin can be used to reduce the digestion time and to provide an effective means for separating the pepsin from the isotopically labeled fragments. These columns are part of an on-line system that facilitates both rapid digestion of low concentrations of protein and concentration of the peptides.  相似文献   

7.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

8.
To address the effects of local structures on structural fluctuations of Escherichia coli dihydrofolate reductase (DHFR), the backbone-fluctuation map was determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) coupled with H/D exchange and pepsin digestion. H/D exchange kinetics was examined at 15 degrees C with 18 identified digestion fragments covering almost the entire amino acid sequence of DHFR. These fragments exhibited significant variations in the first-order rate constant of proton exchange, k(ex) (0.47-0.71 min(-1)), the fraction of deuterium incorporation at the initial stage, D(o) (0.20-0.60), the fraction of deuterium incorporation at infinite time, D(infinity) (0.75-0.97), and the number of protons protected from exchange, P (0.4-4.7), relative to the corresponding values for the whole DHFR molecule (k(ex) = 0.51 min(-1), D(o) = 0.41, D(infinity) = 0.85, and P = 20.7). H/D exchange was very fast in the fragment comprising residues 5-28 (Met20 loop), which participates in substrate uptake, and reasonably fast in disordered and hydrophobic fragments, but slow in beta-strand-rich fragments. These results indicate that the local structures contribute differently to the fluctuation of the DHFR molecule, and that mass spectrometry coupled with H/D exchange and protease digestion is a useful tool for detecting segment-dependent protein fluctuation.  相似文献   

9.
Complement protein C3 is a 187-kDa (1641-aa) protein that plays a key role in complement activation and immune responses. Its hydrolyzed form, C3(H2O), is responsible for the initiation of the activation of alternative complement pathway. Previous analyses using mAbs, anilinonaphthalenesulfonate dyes, and functional studies have suggested that C3 is conformationally different from C3(H2O). We have used amide hydrogen/deuterium exchange and MALDI-TOF mass spectrometry to identify and localize structural differences between native C3 and C3(H2O). Both proteins were incubated in D2O for varying amounts of time, digested with pepsin, and then subjected to mass-spectrometric analysis. Of 111 C3 peptides identified in the MALDI-TOF analysis, 31 had well-resolved isotopic mass envelopes in both C3 and C3(H2O) spectra. Following the conversion of native C3 to C3(H2O), 17 of these 31 peptides exhibited a change in deuterium incorporation, suggesting a conformational change in these regions. Among the identified peptides, hydrogen/deuterium exchange data were obtained for peptides 944-967, 1211-1228, 1211-1231, 1259-1270, 1259-1273, 1295-1318, and 1319-1330, which span the factor H binding site on C3d and factor I cleavage sites, and peptides 1034-1048, 1049-1058, 1069-1080, 1130-1143, 1130-1145, 1211-1228, 1211-1231, 1259-1270, and 1259-1273, spanning 30% of the C3d region of C3. Our results suggest that hydrolysis may produce a looser (more open) structure in the C3d region, in which some of the changes affect the conversion of helical segments into coil segments facilitating interactions with factors I and H. This study represents the first detailed study mapping the regions of C3 involved in conformational transition when hydrolyzed to C3(H2O).  相似文献   

10.
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.  相似文献   

11.
Salt bridges between self-associating hen egg white (HEW) lysozyme and bovine insulin molecules were converted to covalent links by ethanedinitrile (cyanogen) and identified using mass spectrometry. Peptides resulting from cyanogen-mediated intermolecular cross-linking of HEW lysozyme were detected using in-gel digestion and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Sequence data from electrospray ionization-quadrupole-time of flight mass spectrometry (ESI-Q-TOF MS) revealed that one of the peptides has a covalent bond between Asp 66 and Arg 14. The self-assembly of bovine insulin was also investigated using cyanogen. Using high-performance liquid chromatography (HPLC) coupled with ESI-Q-TOF MS, an intermolecular salt bridge association was identified by covalently linking the B chain C-terminal carboxyl group of Ala 30 and the charged imidazole of His 5 (B chain). A method was developed incorporating cyanogen, enzymatic digestion, one-dimensional gel electrophoresis, MALDI-TOF MS, and HPLC ESI-Q-TOF MS to identify amino acid residues participating in salt bridge formations at protein-protein interfaces. The novelty of this approach is the ease with which cyanogen can be administered to a protein sample and the apparent lack of nonspecific cross-linking side reactions interfering with the analysis.  相似文献   

12.
Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins.  相似文献   

13.
Stimulated exocytosis of intracellular granules plays a critical role in conversion of inactive, circulating neutrophils to fully activated cells capable of chemotaxis, phagocytosis, and bacterial killing. The functional changes induced by exocytosis of each of the granule subsets, gelatinase (tertiary) granules, specific (secondary) granules, and azurophil (primary) granules, are poorly defined. To improve the understanding of the role of exocytosis of these granule subsets, a proteomic analysis of the azurophil, specific, and gelatinase granules from human neutrophils was performed. Two different methods for granule protein identification were applied. First, two-dimensional (2D) gel electrophoresis followed by MALDI-TOF MS analysis of peptides obtained by in-gel trypsin digestion of proteins was performed. Second, peptides from tryptic digests of granule membrane proteins were separated by two-dimensional microcapillary chromatography using strong cation exchange and reverse phase microcapillary high pressure liquid chromatography and analyzed with electrospray ionization tandem mass spectrometry (2D HLPC ESI-MS/MS). Our analysis identified 286 proteins on the three granule subsets, 87 of which were identified by MALDI MS and 247 were identified by 2D HPLC ESI-MS/MS. The increased sensitivity of 2D HPLC ESI-MS/MS, however, resulted in identification of over 500 proteins from subcellular organelles contaminating isolated granules. Defining the proteome of neutrophil granule subsets provides a basis for understanding the role of exocytosis in neutrophil biology. Additionally, the described methods may be applied to mobilizable compartments of other secretory cells.  相似文献   

14.
To address the effects of ligand binding on the structural fluctuations of Escherichia coli dihydrofolate reductase (DHFR), the hydrogen/deuterium (H/D) exchange kinetics of its binary and ternary complexes formed with various ligands (folate, dihydrofolate, tetrahydrofolate, NADPH, NADP(+), and methotrexate) were examined using electrospray ionization mass spectrometry. The kinetic parameters of H/D exchange reactions, which consisted of two phases with fast and slow rates, were sensitively influenced by ligand binding, indicating that changes in the structural fluctuation of the DHFR molecule are associated with the alternating binding and release of the cofactor and substrate. No additivity was observed in the kinetic parameters between a ternary complex and its constitutive binary complexes, indicating that ligand binding cooperatively affects the structural fluctuation of the DHFR molecule via long-range interactions. The local H/D exchange profile of pepsin digestion fragments was determined by matrix-assisted laser desorption/ionization mass spectrometry, and the helix and loop regions that appear to participate in substrate binding, largely fluctuating in the apo-form, are dominantly influenced by ligand binding. These results demonstrate that the structural fluctuation of kinetic intermediates plays an important role in enzyme function, and that mass spectrometry on H/D exchange coupled with ligand binding and protease digestion provide new insight into the structure-fluctuation-function relationship of enzymes.  相似文献   

15.
Active enkephalin and related peptide hormones or neurotransmitters are generated by proteolytic processing of inactive prohormone precursors. Little is known about the relative accessibilities of prohormone cleavage sites and conformations of subdomains that undergo proteolytic processing. Therefore, this study investigated the conformational features of the prohormone proenkephalin (PE) by rapid hydrogen-deuterium exchange mass spectrometry (DXMS). DXMS analyzes rates of hydrogen exchange of the polypeptide backbone of PE with deuterium from D(2) O (heavy water) by mass spectrometry, accomplished at sub-second and multisecond time periods. Results showed differential accessibilities of cleavage sites and adjacent subdomains of PE to the aqueous environment. Importantly, protease cleavage sites of PE with greater relative accessibilities correspond to sites most readily cleaved by processing proteases to generate active peptide neurotransmitters. For comparison, peptides derived from PE (by pepsin digestion) displayed greater accessibility to the solvent environment, illustrated by their higher rates of H-D exchange compared to that of intact PE protein. The more limited H-D exchange accessibilities of PE protein, compared to peptides derived from PE, indicate that PE possesses tertiary conformation. These results demonstrate that differential tertiary conformations of PE subdomains undergo ordered proteolytic processing to generate active enkephalin peptides for cell-cell communication in the nervous and endocrine systems.  相似文献   

16.
Using both high performance liquid chromatography (HPLC) and amino acid sequencing (AAS), we previously analyzed band 3 TM peptide-segments that make up the transmembrane protein structure. However, the HPLC/AAS combination method was highly time-consuming. Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry is used to obtain accurate molecular weight information for proteins/peptides simply and sensitively. We applied the MALDI-TOF mass spectrometry technique to search for TM segments in membrane proteins. In combination with trypsin cleavages after alkali treatments (pH12 or 13) and sample preparation using organic solvents for MALDI-TOF mass spectrometry, we determined the TM segments of band 3 and glycophorin A in erythrocyte membrane. The method can be applied to other polytopic membrane proteins in erythrocyte membrane.  相似文献   

17.
Liang ZX  Tsigos I  Lee T  Bouriotis V  Resing KA  Ahn NG  Klinman JP 《Biochemistry》2004,43(46):14676-14683
The psychrophilic alcohol dehydrogenase (psADH) cloned from Antarctic Moraxella sp. TAE123 exhibits distinctive catalytic parameters in relation to the homologous thermophilic alcohol dehydrogenase (htADH) from Bacillus stearothermophilus LLD-R. Amide hydrogen-deuterium (H/D) exchange studies using Fourier-transformed infrared (FTIR) spectroscopy and mass spectrometry (MS) were conducted to investigate whether the differences are caused by variation in either global or regional protein flexibility. The FTIR H/D exchange study suggested that psADH does not share similar global flexibility with htADH at their physiologically relevant temperatures as has been predicted by the "corresponding state" hypothesis. However, the MS H/D exchange study revealed a more complicated picture concerning the flexibility of the two homologous enzymes. Analysis of the deuteration and exchange rates of protein-derived peptides suggested that only some functionally important regions in psADH that are involved in substrate and cofactor binding exhibit greater flexibility compared to htADH at low temperature (10 degrees C). These observations strongly suggest that variable conformational flexibility between the two protein forms is a local phenomenon, and that global H/D exchange measurement by FTIR can be misleading and should be used with discretion. These results are supportive of the idea that functionally important local flexibility can be uncoupled from global thermal stability. The structural factors underlying the differences in local protein flexibility and catalysis between htADH and psADH are discussed in conjunction with results from crystallographic and fluorescence spectroscopy studies.  相似文献   

18.
19.
Several approaches were explored for obtaining high sequence coverage in protein modification studies performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Human serum albumin (HSA, 66.5kDa) was used as a model protein for this work. Experimental factors considered in this study included the type of matrix used for MALDI-TOF MS, the protein digestion method, and the use of fractionation for peptide digests prior to MALDI-TOF MS analysis. A mixture of alpha-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid was employed as the final matrix for HSA. When used with a tryptic digest, this gave unique information on only half of the peptides in the primary structure of HSA. However, the combined use of three enzyme digests based on trypsin, endoproteinase Lys-C, and endoproteinase Glu-C increased this sequence coverage to 72.8%. The use of a ZipTip column to fractionate peptides in these digests prior to analysis increased the sequence coverage to 97.4%. These conditions made it possible to examine unique peptides from nearly all of the structure of HSA and to identify specific modifications to this protein (e.g., glycation sites). For instance, Lys199 was confirmed as a glycation site on normal HSA, whereas Lys536 and Lys389 were identified as additional modification sites on minimally glycated HSA.  相似文献   

20.
A new strategy has been employed for the identification of the covalent modification sites (mainly acetylation and methylation) of histone H3 from chicken erythrocytes using low enzyme/substrate ratios and short digestion times (trypsin used as the protease) with analysis by HPLC separation, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), matrix-assisted laser desorption ionization-postsource decay, and tandem mass spectrometric techniques. High-accuracy MALDI-TOF mass measurements with representative immonium ions (126 for acetylated lysine, 98 for monomethylated lysine, and 84 for di-, tri-, and unmethylated lysine) have been effectively used for differentiating methylated peptides from acetylated peptides. Our results demonstrate that lysines 4, 9, 14, 27, and 36 of the N-terminal of H3 are methylated, while lysines 14, 18, and 23 are acetylated. Surprisingly, a non-N-terminal residue, lysine 79, in the loop region hooking up to the bound DNA, was newly found to be methylated (un-, mono-, and dimethylated isoforms coexist). The reported mass spectrometric method has the advantages of speed, directness, sensitivity, and ease over protein sequencing and Western-blotting methods and holds the promise of an improved method for determining the status of histone modifications in the field of chromosome research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号