首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  国内免费   2篇
  完全免费   85篇
  2019年   2篇
  2018年   9篇
  2017年   12篇
  2016年   8篇
  2015年   7篇
  2014年   10篇
  2013年   13篇
  2012年   23篇
  2011年   23篇
  2010年   9篇
  2009年   13篇
  2008年   27篇
  2007年   23篇
  2006年   14篇
  2005年   14篇
  2004年   14篇
  2003年   16篇
  2002年   11篇
  2001年   48篇
  2000年   28篇
  1999年   32篇
  1998年   11篇
  1997年   12篇
  1996年   5篇
  1995年   5篇
  1994年   10篇
  1993年   2篇
  1992年   24篇
  1991年   17篇
  1990年   6篇
  1989年   12篇
  1988年   16篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1968年   1篇
  1966年   2篇
  1962年   1篇
  1957年   1篇
  1955年   1篇
  1948年   1篇
排序方式: 共有523条查询结果,搜索用时 62 毫秒
1.
A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.  相似文献
2.
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.  相似文献
3.
Phosphorylation of histone H3 at serine 10 occurs during mitosis and meiosis in a wide range of eukaryotes and has been shown to be required for proper chromosome transmission in Tetrahymena. Here we report that Ipl1/aurora kinase and its genetically interacting phosphatase, Glc7/PP1, are responsible for the balance of H3 phosphorylation during mitosis in Saccharomyces cerevisiae and Caenorhabditis elegans. In these models, both enzymes are required for H3 phosphorylation and chromosome segregation, although a causal link between the two processes has not been demonstrated. Deregulation of human aurora kinases has been implicated in oncogenesis as a consequence of chromosome missegregation. Our findings reveal an enzyme system that regulates chromosome dynamics and controls histone phosphorylation that is conserved among diverse eukaryotes.  相似文献
4.
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.  相似文献
5.
A new powdery mildew resistance gene designated Pm21, from Haynaldia villosa, a relative of wheat, has been identified and incorporated into wheat through an alien translocation line. Cytogenetic and biochemical analyses showed that chromosome arms 6VS and 6AL were involved in this translocation. Random amplified polymorphic DNA (RAPD) analysis was performed on recipient wheat cultivar Yangmai 5, the translocation line, and H. villosa with 180 random primers. Eight of the 180 primers amplified polymorphic DNA in the translocation line, and the same results were obtained in four replications. Furthermore, RAPD analysis was reported for substitution line 6V, seven addition lines (1V-7V), and the F1, as well as F2 plants of (translocation line x 'Yangmai 5'), using two of the eight random primers. One RAPD marker, specific to chromosome arm 6VS, OPH17-1900, could be used as a molecular marker for the detection of gene Pm21 in breeding materials with powdery mildew resistance introduced from H. villosa. Key words : RAPD analysis, 6VS-specific marker, Pm21, Erysiphe graminis f.sp. tritici, Triticum aestivum - Haynaldia villosa translocation.  相似文献
6.
7.
Yue S  Zhang W  Li FL  Guo YL  Liu TL  Huang H 《Cell research》2000,10(4):325-335
Molecular and genetic characterizations of mutants have led to a better understanding of many developmental processes in the model system Arabidopsis thaliana.However,the leaf development that is specific to plants has been little studies.With the aim of contributing to the genetic dissection of leaf development,we have performed a large-scare screening for mutants with abnormal leaves.Among a great number of leaf mutants we have generated by T-DNA and transposon tagging and ethylmethae sulfonate (EMS) mutagenesis,four independent mutant lines have been identified and studied genetically.Phenotypes of these mutant lines represent the defects of four novel muclear genes designated LL1(LOTUS LEAF 1),LL2(LOTUS LEAF2),URO(UPRIGHT ROSETTE),and EIL(ENVIRONMENT CONDITION INDUCED LESION).The phenotypic analysis indicates that these genes play important roles during leaf development.For the further genetic analysis of these genes and the map-based cloning of LL1 and LL2,we have mapped these genes to chromosome regions with an efficient and rapid mapping method.  相似文献
8.
W. Li  A. P. Mitchell 《Genetics》1997,145(1):63-73
In the yeast Saccharomyces cerevisiae, rim1, 8, 9, or 13 mutations cause four phenotypes: poor growth at low temperature, altered colony morphology, inefficient sporulation due to reduced expression of the meiotic activator IME1, and, as shown here, defective invasive growth. In this report, we have determined the relationship between RIM1 and the other genes, RIM8, 9, and 13, in this group. We have analyzed production of epitope-tagged Rim1p derivatives with HA epitopes at the N-terminus or in the middle of the protein. These Rim1p derivatives exist primarily as a small form (90 kD for Rim1-HA2p) in wild-type cells and as a large form (98 kD for Rim1-HA2p) in rim8, 9, and 13 mutants. We have also analyzed production of β-galactosidase in strains that express a RIM1-lacZ fusion gene. β-galactosidase exists primarily as a ~130 kD form in wild-type cells and as a ~190 kD form in rim9 mutants. These results indicate that Rim1p undergoes C-terminal proteolytic cleavage, and that rim8, 9, and 13 mutations block cleavage. Expression of a Rim1p C-terminal deletion derivative suppresses rim8, 9, and 13 mutations. Thus the phenotypes of rim8, 9, and 13 mutants arise from the defect in Rim1p C-terminal cleavage. Cleavage of Rim1p, like that of its Aspergillus nidulans homologue PacC, is stimulated under alkaline growth conditions. Therefore, Rim1p, PacC and their respective processing pathways may represent a conserved signal transduction pathway.  相似文献
9.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献
10.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号