首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
研制一种可响应酸性磷酸酶浓度变化的聚电解质胶囊,(PAH/PSS-β-甘油磷酸酯)胶囊,在分析胶囊的理化性质的基础上对其阿霉素药物包封和体外控释行为进行研究.通过层层组装的方法,制备囊壁含有酸性磷酸酶底物β-甘油磷酸酯的空壳胶囊和囊壁不含酸性磷酸酶底物的对照空壳胶囊;用电镜测定胶囊的大小和形态:用MTT方法分析胶囊的生物相容性.通过药物浓度梯度法进行胶囊的阿霉素药物包封并测定其包封率.将酸性磷酸酶标准品、分泌酸性磷酸酶的HepG2细胞株分别与载药阿霉素胶囊和载药阿霉素对照胶囊作用,观察阿霉素胶囊的药物控释情况和对肿瘤细胞生长的影响.空壳(PAH/PSS-β-甘油磷酸酯)胶囊粒径多在200-300 nm之间,胶囊浓度≤250μtg/mL时生物相容性良好,对阿霉素的包封率迭68.12%;载药胶囊组和对照组分别与酸性磷酸酶标准品作用,至48 h时分别释放出载药量的38%和15%,两者差异具有显著的统计学意义(P<0.05);载药胶囊组较载药对照组对HepG2细胞株的生长抑制作用明显增加,24 h HepG2细胞凋亡相差7.59%(13.73 Vs 6.14),有明显统计学意义(P<0.05).囊壁含有酸性磷酸酶底物的载药聚电解质胶囊,可在体外响应酸性磷酸酶浓度变化,具有药物控释性状,为临床上有酸性磷酸酶升高的良、恶性疾病的药物控释治疗提供了一种新的方法,其应用前景值得进一步探讨.  相似文献   

2.
The enzyme-dependent conjugates of indomethacin and amylose (Am-IND) were synthesized at room temperature using N,N′-dicyclohexylcarbodiimide (DCC) as a coupling agent and 4-(N,N′-dimethylamino) pyridine (DMAP) as a catalyst. Their structures were characterized by FTIR and 1H NMR analyses, and the results indicated that the IND residues were conjugated with amylose backbones through ester bonds. For the conjugate with a lower IND content, the better water absorption property was advantageous for enzymes diffusing into the swollen conjugate, resulting in biodegradation of the conjugates and release of IND. In vitro biodegradation evaluation indicated that the Am-IND conjugates were biodegraded in the simulated media of the intestines. In vitro drug release experiments showed that the Am-IND conjugates exhibited a sustained release behavior in the simulated media of the intestines, while IND was hardly released in the simulated gastric fluid. These features provide a great opportunity to use the conjugates as a prodrug for intestinally targeted and controlled release of IND through oral administration. This study may lead to the development of effective methods for utilizing amylose as a new drug delivery carrier.  相似文献   

3.
Hindrance to successful therapy of colon cancer is generally characterized with reduced potency of a single drug at the active site of cancer, poor drug release, and most importantly, potential toxic side effects of the drug resulting in cytotoxicity. Therefore, we investigated combinatorial drug micelles which are a potent combination of twin anticancer drugs (indomethacin and piroxicam, IND+PIR mc) for successful therapeutics of colon cancer. The novel combinatorial micelles showed improved drug encapsulation efficiency, an in vitro burst release of the dual drugs, increased cytocompatibility and increased efficacy in tumor reduction (weight and volume) than in single drug micelles (IND mc or PIR mc). The improved IND+PIR MC were to have small size 150.36 ± 15.13 nm (to avoid being taken up by liver, lungs or kidney or to sediment) with poly dispersity index (PDI) value at 0.24 ± 0.01. The PDI values suggest homogenous distribution. Encapsulation efficiency of IND+PIR mc was calculated at 86%. IND+PR mc had improved biocompatibility as demonstrated by CRL-1459™ (normal colon) cell line than IND mc or PIR mc individually. The in vivo studies in mice model clearly depict that subcutaneous tumor weight reduced by almost 75% and volume reduced drastically by 55% on administration of IND+PIR mc than IND mc or PIR mc. Furthermore, fewer side effects were found with IND+PIR mc. To conclude, IND+PIR mc may be a potential anticancer strategy to be explored more in the future.  相似文献   

4.
The purpose of this research was to develop an emulsion formulation of indomethacin (IND) suitable for nasal delivery. IND was incorporated into the oil phases of oil in water (O/W) and water in oil (W/O) emulsions. For this purpose, different emulsifying agents (Tween 80, Span 80 and Brij 58) were used in two emulsion formulations. When the effects of several synthetic membranes (nylon, cellulose, cellulose nitrate) were compared with the sheep nasal mucosa, the cellulose membrane and sheep nasal mucosa showed similar permeation properties for O/W emulsion (P > 0.05). To examine the absorption characteristics of IND, the anti-inflammatory properties of intravenous solution of IND, intranasal O/W emulsions of IND (with or without enhancers) and intranasal solution of IND (IND-Sol) were investigated in rats with carrageenan-induced paw edema. When citric acid was added to the nasal emulsion, the anti-inflammatory activity was similar to that of intravenous solution (P > 0.05). Finally, it was concluded that, intranasal administration of IND emulsion with citric acid may be considered as an alternative to intravenous and per oral administrations of IND to overcome their adverse effects.  相似文献   

5.
Indomethacin (IND) is the drug of choice for the closure of a patent ductus arteriosus (PDA) in neonates. This paper describes a simple, sensitive, accurate and precise microscale HPLC method suitable for the analysis of IND in plasma of premature neonates. Samples were prepared by plasma protein precipitation with acetonitrile containing the methyl ester of IND as the internal standard (IS). Chromatography was performed on a Hypersil C(18) column. The mobile phase of methanol, water and orthophosphoric acid (70:29.5:0.5, v/v, respectively), was delivered at 1.5 mL/min and monitored at 270 nm. IND and the IS were eluted at 2.9 and 4.3 min, respectively. Calibrations were linear (r>0.999) from 25 to 2500 microg/L. The inter- and intra-day assay imprecision was less than 4.3 % at 400-2000 microg/L, and less than 22.1% at 35 microg/L. Inaccuracy ranged from -6.0% to +1.0% from 35 to 2000 microg/L. The absolute recovery of IND over this range was 93.0-113.3%. The IS was stable for at least 36 h when added to plasma at ambient temperature. This method is suitable for pharmacokinetic studies of IND and has potential for monitoring therapy in infants with PDA when a target therapeutic range for IND has been validated.  相似文献   

6.
The aim of this study was to formulate a sustained release system for indomethacin (IND) with rosin gum obtained from a pine tree. Rosin microparticles were prepared by a dispersion and dialysis method without the addition of surfactant. In order to investigate the influence of solvents on the formation of colloidal microparitcles, various solvents like ethanol, DMF, DMAc, and acetone were used. The rosin microparticles containing IND were characterized by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The morphologies of rosin microparticles observed by scanning electron microscopy (SEM) were spherical. The solvents used to dissolve rosin significantly affected the drug content and drug release rate of IND. The release behaviors of IND from the rosin microparticles were dependent on the drug content and size of the particles. Rosin microparticles with a higher drug content and of a larger particle size had a slower drug release rate. Also, the IND release rate from the rosin microparticles could be regulated by the rosin content in the microparticles. From these results, rosin microparticles have the potential of being used as a sustained release system of IND.  相似文献   

7.
Paclitaxel (PTX) and organophilic iron oxide nanocrystals of 7 nm average size were co-encapsulated in the oily core of poly(lactide)-poly(ethyleneglycol) (PLA-PEG) nanocapsules in order to develop magnetically responsive nanocarriers of PTX. The nanocapsules were prepared by a solvent displacement technique and exhibited satisfactory drug and iron oxide loading efficiency, high colloidal stability, and sustained drug release properties. Drug release also proved responsive to an alternating magnetic field. Magnetophoresis experiments showed that the magnetic responsiveness of the nanocapsules depended on their SPION content. The PTX-loaded nanocapsules exhibited comparable to free PTX cytotoxicity against the A549 lung cancer cell line at 24 h of incubation but higher cytotoxicity than free drug at 48 h of incubation. The conjugation of a cysteine-modified TAT peptide (HCys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-NH2) on the surface of the nanocapsules resulted to highly increased uptake of nanocapsules by cancer cells, as well as to profound improvement of their cytotoxicity against the cancer cells. The results obtained justify further investigation of the prospects of these multifunctional PLA-PEG nanocapsules as a targeted delivery system of paclitaxel.  相似文献   

8.
Cisplatin nanocapsules represent a novel lipid formulation of the anti-cancer drug cis-diamminedichloroplatinum(II) (cisplatin), in which nanoprecipitates of cisplatin are coated by a phospholipid bilayer consisting of a 1:1 mixture of zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS). Cisplatin nanocapsules are characterized by an unprecedented cisplatin-to-lipid ratio and exhibit increased in vitro cytotoxicity compared to the free drug [Nat. Med. 8, (2002) 81]. In the present study, the stability of the cisplatin nanocapsules was optimized by varying the lipid composition of the bilayer coat and monitoring in vitro cytotoxicity and the release of contents during incubations in water and in mouse serum. The release of cisplatin from the PC/PS (1:1) nanocapsules in water increased with increasing temperature with a t(1/2) of 6.5 h at 37 degrees C. At 4 degrees C, cisplatin was retained in the nanocapsules for well over 8 days. Replacement of PS by either phosphatidylglycerol or phosphatidic acid revealed that nanocapsules prepared of PS were more stable, which was found to be due to the ability of PS to form a stable cisplatin-PS coordination complex. Mouse serum had a strong destabilizing effect on the cisplatin nanocapsules. The PC/PS formulation lost over 80% of cisplatin within minutes after resuspension in serum. Incorporation of poly(ethylene glycol 2000) (PEG)-derivatized phosphatidylethanolamine and cholesterol in the bilayer coat extended the lifetime of the cisplatin nanocapsules in mouse serum to almost an hour. The results demonstrate that specificity in the interaction of cisplatin with anionic phospholipids is an important criterium for the formation and stability of cisplatin nanocapsules.  相似文献   

9.
The aim of these experiments was to investigate the radical scavenging properties of three diuretics: indapamide (IND) and its major metabolite, 5-OH indapamide (5-OH IND), compared to a reference diuretic, hydrochlorothiazide (HTZ). Electron Paramagnetic Resonance (EPR) was used to determine the scavenging abilities of these compounds on enzymatically produced superoxide radical anion, with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) used as a spin-trap. These experiments revealed that IND and specially 5-OH IND were effective superoxide radical anion scavengers at 0.2 mg/ml. In the second part of these studies, allophycocyanin was used as an indicator of free radical mediated protein damage. In the assay, 2,2-azobis(2-amidinopropane) hydrochloride (AAPH) was used as a peroxyl radical generator, Trolox (a water-soluble analogue of vitamin E) as a control standard, and the loss of allophycocyanin fluorescence was monitored. The antioxidant effects of the diuretics were expressed in oxygen-radical absorbing capacity (ORAC), where one ORAC unit equals the net protection produced by 1 µM Trolox. HTZ showed no protection up to 100 µM final concentration, whereas IND and 5-OH IND showed linear correlation with respect to concentration when expressed in ORAC units: 5-OH IND induced the highest protection against peroxyl radical. The above observations suggested that IND and 5-OH IND are potent radical scavengers, with the metabolite 5-OH IND having a superior antioxidant potency than IND. By contrast, HTZ had no effect. These radical scavenging properties of 5-OH IND may be of clinical interest for vascular protection and may help to protect the heart from oxidative injury.  相似文献   

10.
In this article, nickel(II) oxide (NiO) hollow microspheres (HMSs) were fabricated and used to catalyze chemiluminescence (CL) reaction. The studied CL reaction is the luminol-oxygen reaction that was used as a sensitive analytical tool for measuring tuberculostatic drug isoniazid (IND) in pharmaceutical formulations and water samples. The CL method was established based on the suppression impact of IND on the CL reaction. The NiO HMSs were produced by a simple hydrothermal method and characterized by several spectroscopic techniques. The result of essential parameters on the analytical performance of the CL method, including concentrations of sodium hydroxide (NaOH), luminol, and NiO HMSs were investigated. At the optimum conditions, the calibration curve for IND was linear in the range of 8.00 × 10−7 to 1.00 × 10−4 mol L−1 (R2 = 0.99). A detection limit (3S) of 2.00 × 10−7 mol L−1 was obtained for this method. The acceptable relative standard deviation (RSD) was obtained for the proposed CL method (2.63%, n = 10) for a 5.00 × 10−6 mol L−1 IND solution. The mechanism of the CL reaction was also discussed.  相似文献   

11.
具有佐剂效果的海藻酸钙纳米胶囊制备   总被引:3,自引:1,他引:2  
利用海藻酸多糖酸沉淀性质并结合乳化技术,本研究开发了一种酸沉淀诱导相变制备海藻酸钙纳米胶囊的新颖方法,并通过改变海藻酸钠溶液和表面活性剂浓度获得了最小平均水动力学直径在300 nm以下的球形凝胶颗粒,粒径分布均一,表面呈负电性。细胞培养实验结果表明,该海藻酸钙纳米胶囊对人外周血来源未成熟树突状细胞的成熟有与肿瘤坏死因子?(TNF-?)和细菌脂多糖(LPS)相当效力的刺激作用。蛋白质分子可通过共价偶联方式负载。该海藻酸钙纳米胶囊在新型疫苗设计、细胞治疗和靶向给药等方面具有重要的应用潜力。  相似文献   

12.
Pectin is a heteropolysaccharide which has been investigated for the development of colon-specific drug delivery systems. Polymers have been associated with pectin to reduce its aqueous solubility and improve the performance of drug delivery systems. Pectin–casein interaction is widely known in food research, but it has not been fully considered by pharmaceutical scientists. Thus, this study investigated the potential of casein–pectin microparticles as a drug delivery system and clarified the impact of cross-linking and drying methods on the in vitro release of indomethacin (IND) or acetaminophen (PCT) from microparticles. Microparticles were prepared by coacervation and dried by spray or spouted bed methods. Drug recovery, in vitro drug release, size, morphology, and the thermal and diffractometric properties of dried microparticles were determined. Spray-dried non-cross-linked microparticles were able to prolong IND release, and pectin was still degraded by pectinolytic enzymes. On the other hand, glutaraldehyde cross-linking prevented the enzymatic breakdown of pectin without improving IND release. Spouted bed drying reduced IND recovery from all microparticles when compared with spray drying, thus the successful spouted bed drying of microparticles depends on the chemical characteristics of both the drug and the polymer. Release data from PCT microparticles suggested that the microparticle formulation should be improved to bring about a more efficient delivery of water-soluble drugs. In conclusion, casein–pectin microparticles show great potential as a drug delivery system because casein reduces the water solubility of pectin. The drying method and cross-linking process had significant effects on the in vitro performance of these microparticles.  相似文献   

13.
Drug delivery systems that are based on pectin have been studied for colon specific delivery using the specific activity of colon microflora. The aim of this study was to design a novel method of manufacturing pectin microspheres without oils and surfactants and to investigate the potential use of the pectin microsphere as an oral colon-specific drug carrier. The pectin microspheres were successfully formed using the spray drying method and crosslinking with calcium chloride. From the crosslinked pectin microspheres, indomethancin (IND) release was more supressed than its release from non-crosslinked microspheres. In a low pH (pH 1.4) environment, the pectin microspheres released IND at an amount of about 18±2% of the total loaded weight for 24h while the release rate of IND was stimulated at neutral pH (pH 7.4). IND release from the pectin microspheres was increased by the addition of pectinase. The results clearly demonstrate that the pectin microspheres that were prepared by the spray drying and crosslinking methods are potential carriers for colon-specific drug deliveries.  相似文献   

14.
We studied the pH-sensitive indomethacin (IND) delivery system using pullulan. Hydrophobic pullulan acetate was prepared by chemical modification of hydrophilic pullulan and pullulan acetate microsphere was made by a solvent evaporation method. The size of microspheres was below 5 μm, and the drug loading efficiencies of microspheres were approximately 78 and 65% at the initial amount of drug 40 and 80 mg, respectively. The microsphere showed pH-sensitive swelling behavior in PBS buffer. After 15 hrs, the swelling of the microsphere at pH 7.4 was approximately 20 times greater than that at pH1.2. The pH of the medium significantly influenced on thein vitro release rate. The released amount of drug at pH 7.2 was approximately 90 times greater than that at pH 1.2. The shape of microspheres at pH 1.2 were maintained sphere forms, but at pH 7.4 were disintegrated. The pH-sensitive IND release pattern was due both to the pH-sensitive diffusion of IND from the microspheres and to the release of the drug from the surface which underwent disintegration after swelling, due to the chemical composition of the microspheres and the pH of the release media.  相似文献   

15.
Free-flowing proniosomal powders of acemetacin (AC) were prepared using the slurry method and maltodextrin as carrier. Positively charged proniosomes composed of 70:20:10 of Span 60/cholesterol (Chol)/stearylamine (SA), respectively, were successively compressed into tablets using direct compression method. The tablets were characterized for weight variability, friability, hardness, drug content uniformity, and dissolution properties. The in vivo evaluation of the prepared proniosomes (powder or tablet forms) after oral administration was investigated by the determination of AC and its active metabolite indomethacin (IND) in the blood of albino rabbits. Results indicated that the increase of Chol from 10% to 20% markedly reduced the efflux of the drug. Further Chol addition from 30% to 50% led to increased AC release rates. The proniosome tablets of AC showed greater hardness and disintegration time and less friability than AC plain tablets. The dissolution of proniosomal tablets indicated a lower drug release percentage compared to powdered proniosomes and AC plain tablets. The mean pharmacokinetic parameters of AC and IND from different formulations indicated increased t1/2 and area under the curve (AUC) of both AC and IND for proniosomal tablets compared with both proniosomal powders and AC plain tablets. This study suggested the formulation of AC proniosomal powder into tablets to control and extend its pharmacologic effects.KEY WORDS: acemetacin, proniosomes, sustained-release tablet, pharmacokinetics  相似文献   

16.
The indole derivative 2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene]acetohydrazide (IND) was synthesized for its therapeutic potential to inhibit cyclooxygenase (COX)-II. Binding if IND to bovine serum albumin (BSA) was investigated was because most drugs bind to serum albumin in-vivo. Fluorescence, UV–vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism. The intrinsic fluorescence of BSA was quenched by BSA and the quenching mechanism involved was static quenching. The binding constants between IND and BSA at the three studied temperatures (298, 301 and 306 K) were 1.09 × 105, 4.36 × 104 and 1.23 × 104 L mol−1 respectively. The most likely site for binding IND to BSA was Site I (subdomain IIA). The analysis of thermodynamic parameter revealed the involvement of hydrogen bonding and van der Waals forces in the IND-BSA interaction. Synchronous fluorescence spectroscopic (SFS) and UV–vis spectrophotometric studies suggested conformational change in BSA molecule post interaction to IND. Molecular docking and the experimental results corroborated one another. The study can prove as an insight for future IND drug development.  相似文献   

17.
Bae KH  Lee Y  Park TG 《Biomacromolecules》2007,8(2):650-656
PEO-PPO-PEO/PEG shell cross-linked nanocapsules encapsulating an oil phase in their nanoreservoir structure was developed as a target-specific carrier for a water-insoluble drug, paclitaxel. Oil-encapsulating PEO-PPO-PEO/PEG composite nanocapsules were synthesized by dissolving an oil (Lipiodol) and an amine-reactive PEO-PPO-PEO derivative in dichloromethane and subsequently dispersing in an aqueous solution containing amine-functionalized six-arm-branched poly(ethylene glycol) by ultrasonication. The resultant shell cross-linked nanocapsules had a unique core/shell architecture with an average size of 110.7 +/- 9.9 nm at 37 degrees C, as determined by dynamic light scattering and transmission electron microscopy. Paclitaxel could be effectively solubilized in the inner Lipiodol phase surrounded by a cross-linked PEO-PPO-PEO/PEG shell layer. The paclitaxel-loaded nanocapsules were further conjugated with folic acid to achieve folate receptor targeted delivery. Confocal microscopy and flow cytometric analysis revealed that folate-mediated targeting significantly enhanced the cellular uptake and apoptotic effect against folate receptor overexpressing cancer cells. The present study suggested that these novel nanomaterials encapsulating an oil reservoir could be potentially applied for cancer cell targeted delivery of various water-insoluble therapeutic and diagnostic agents.  相似文献   

18.
In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)‐enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND‐enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies—mAb1, mAb2, and mAb3—at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND‐enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449–1455, 2017  相似文献   

19.
The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL−1) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.KEY WORDS: dialysis sac technique, flow-through cell apparatus, in vitro drug release, lipid-core nanocapsules, sink condition  相似文献   

20.
Abstract

The laccase (Lac), manganese peroxidases (MnP), and lignin peroxidase enzymes produced by basidiomycete have been studied due to their potential in bioremediation, therefore, in this study, degradation of diclofenac (DCF), sulfamethoxazole (SMX), indomethacin (IND), gemfibrozil (GFB), and bezafibrate (BZF) by enzymes produced by Trametes maxima, Pleurotus sp., and Pycnosporus sanguineus grown in culture was evaluated. The degradation of drugs can mainly be attributed to MnP because a correlation between the activity of this enzyme and the degree of removal was found. The specific activity of Lac did not show correlation with drug removal, while lignin peroxidase was not expressed. Trametes maxima showed the highest specific activity of MnP (387.6?±?67.4?U/mg) and efficiency removal 90.2% of DCF, 72.62% of SMX, 60.76% of IND, 43.39% of GFB, and 32.59% of BZF) followed by Pleurotus sp. with specific activity of MnP of 55.9?±?8.5?U/mg and 89.47% of DCF, 47.61% of GFB and 73% of IND were removed, P. sanguineus had the lowest specific activity of 18?±?1.3?U/mg and was able to remove only 42% of SMX and 10.59% of IND. In order to prove that MnP remove drugs instead of Lac, the pure Lac was tested and only degraded DCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号