首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV–vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, KA, are 7.159 × 103, 9.398 × 103 and 16.101 × 103 L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV–vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Diamine‐sarcophagine (DiAmsar) binding to human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under simulative physiological conditions. Fluorescence spectra in combination with Fourier transform infrared (FT‐IR), UV‐visible (UV–vis) spectroscopy, cyclic voltammetry (CV), and molecular docking method were used in the present work. Experimental results revealed that DiAmsar had an ability to quench the HSA and BSA intrinsic fluorescence through a static quenching mechanism. The Stern–Volmer quenching rate constant (Ksv) was calculated as 0.372 × 103 M‐1 and 0.640 × 103 M‐1 for HSA and BSA, respectively. Moreover, binding constants (Ka), number of binding sites (n) at different temperatures, binding distance (r), and thermodynamic parameters (?H°, ?S°, and ?G°) between DiAmsar and HSA (or BSA) were calculated. DiAmsar exhibited good binding propensity to HSA and BSA with relatively high binding constant values. The positive ?H° and ?S° values indicated that the hydrophobic interaction is main force in the binding of the DiAmsar to HSA (or BSA). Furthermore, molecular docking results revealed the possible binding site and the microenvironment around the bond. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction between thiamine hydrochloride (TA) and bovine serum albumin (BSA) was investigated by fluorescence, FTIR, UV–vis spectroscopic and cyclic voltammetric techniques under optimised physiological condition. The fluorescence intensity of BSA is gradually decreased upon addition of TA due to the formation of a BSA–TA complex. The binding parameters were evaluated and their behaviour at different temperatures was analysed. The quenching constants (Ksv) obtained were 2.6 × 104, 2.2 × 104 and 2.0 × 104 L mol?1 at 288, 298 and 308 K, respectively. The binding mechanism was static-type quenching. The values of ΔH° and ΔS° were found to be 26.87 kJ mol?1 and 21.3 J K?1 mol?1, and indicated that electrostatic interaction was the principal intermolecular force. The changes in the secondary structure of BSA upon interaction with TA were confirmed by synchronous and 3-D spectral results. Site probe studies reveal that TA is located in site I of BSA. The effects of some common metal ions on binding of BSA–TA complex were also investigated.  相似文献   

4.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

5.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

6.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

8.
At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode ‘point to surface’ existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV–vis spectroscopy. Values of binding parameters for BSA–CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 103, 3.24 × 103, and 2.30 × 103 M?1 at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:487‐492, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21446  相似文献   

10.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

11.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

12.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

13.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

14.
The binding of bovine serum albumin (BSA) to ethambutol (EMB) was investigated using spectroscopic methods, viz., fluorescence, Fourier transform infrared (FTIR), ultraviolet (UV)/vis absorption and cyclic voltammetry techniques. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of serum albumin by EMB is static, which was also confirmed by lifetime measurements. The number of binding sites, n, and binding constant, K, were obtained at various temperatures. The distance, r, between EMB and the protein was evaluated according to the Förster energy transfer theory. Based on displacement experiments using site probes, viz., warfarin, ibuprofen and digitoxin, the site of binding of EMB in BSA was proposed to be Sudlow's site I. The effect of EMB on the conformation of BSA was analyzed by using synchronous fluorescence spectra (SFS) and 3D fluorescence spectra. The results of fluorescence, UV/vis absorption and FTIR spectra showed that the conformation of BSA was changed in the presence of EMB. The thermodynamic parameters including enthalpy change (ΔH0), entropy change (ΔS0) and free energy change (ΔG0) for BSA–EMB were calculated according to the van't Hoff equation and are discussed.  相似文献   

15.
The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516?×?104, 1.627?×?104, and 1.711?×?104?mol L?1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol?1 and 125.217 J?mol?1?K?1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.  相似文献   

16.
The interaction between 3‐spiro‐2′‐pyrrolidine‐3′‐spiro‐3″‐piperidine‐2,3″‐dione (PPD) and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence and UV–vis spectroscopy. Fluorescence emission data revealed that BSA (1.00 × 10‐5 mol/L) fluorescence was statically quenched by PPD at various concentrations, which implies that a PPD–BSA complex was formed. The binding constant (KA), the number of binding sites (n) and the specific binding site of the PPD with BSA were determined. Energy‐transfer efficiency parameters were determined and the mechanism of the interaction discussed. The thermodynamic parameters, ΔG, ΔH and ΔS, were obtained according to van't Hoff's equation, showing the involvement of hydrophobic forces in these interactions. The effect of PPD acting on the BSA conformation was detected by synchronous fluorescence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The fluorescence, ultraviolet (UV) absorption, time resolved techniques, circular dichroism (CD), and infrared spectral methods were explored as tools to investigate the interaction between histamine H1 drug, epinastine hydrochloride (EPN), and bovine serum albumin (BSA) under simulated physiological conditions. The experimental results showed that the quenching of the BSA by EPN was static quenching mechanism and also confirmed by lifetime measurements. The value of n close to unity indicated that one molecule of EPN was bound to protein molecule. The binding constants (K) at three different temperatures were calculated (7.1 × 104, 5.5 × 104, and 3.9 × 104M−1). Based on the thermodynamic parameters (ΔH0, ΔG0, and ΔS0), the nature of binding forces operating between drug and protein was proposed. The site of binding of EPN in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz, warfarin, ibuprofen, and digitoxin. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (EPN) was evaluated and found to be 4.48 nm. The UV–visible, synchronous fluorescence, CD, and three‐dimensional fluorescence spectral results revealed the changes in secondary structure of the protein upon its interaction with EPN. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 646–657, 2015.  相似文献   

18.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

19.
The interaction of etravirine with β-cyclodextrin is analyzed by UV–visible absorption, infrared, fluorescence, nuclear magnetic resonance, two-dimensional rotational frame nuclear Overhauser effect spectroscopy, and molecular modeling studies. The 4-hydroxy-3, 5-dimethylbenzonitrile moiety is found to take part in the binding. The stoichiometry of the inclusion complex of ET with β-CD is 1:1 with the binding constant of 2.03 × 103 mol?1 dm3. The binding of ET with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) protein is investigated in the presence and the absence of β-CD. Fluorescence enhancement is observed during the binding of ET with ctDNA in the absence of β-CD, whereas in the presence of β-CD, fluorescence quenching is observed. The binding constants of the binding of ET and ET–β-CD to ctDNA are 7.84 × 104 and 4.38 × 104 mol?1 dm3, respectively. The binding constant of the binding of ET and ET–β-CD to BSA are 3.14 × 104 and 1.6396 × 104 mol?1 dm3, respectively. The apparent binding constants between ET–β-CD complex and ctDNA or BSA protein decreases significantly. The numbers of binding sites of interaction of ET with BSA protein and the binding distance between BSA protein and ET the absence and the presence of β-CD differ. β-CD modulates the binding of ET with the macromolecular targets.  相似文献   

20.
Here, Tagetes erecta leaves extract mediated silver nanopartices (te-SNPs) were synthesized. This synthesis process was simple, one step and eco-friendly. The te-SNPs were characterized by various spectroscopic instruments such as ultraviolet visible (UV–vis), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM) with energy Dispersive X-ray Spectroscopy (EDS). These te-SNPs showed the effective bactericidal activity against Escherichia coli and Staphylococcus aureus. The interaction of te-SNPs with human serum albumin (HSA) was evaluated by UV–vis absorption, fluorescence (FL), time resolved fluorescence (TRF), DLS and circular dichroism (CD) study. TRF and temperature dependant study suggested that the interaction process followed the dynamic quenching mechanism. The stern-volmer quenching constants (KSV) were obtained as 1.36 × 107, 1.51 × 107 and 1.94 × 107 M−1at 288, 298 and 308 K respectively. The thermodynamic parameters were also evaluated and this result suggested that the interaction was spontaneous, and the hydrophobic forces played the most important role for the interaction process. In addition, CD spectra proved minute alteration of secondary structure of HSA upon interaction with the te-SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号