首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
The long journey of developing a drug from initial discovery target identification to regulatory approval often leaves many patients with missed window of opportunities. Both regulatory agencies and biopharmaceutical industry continue to develop creative approaches to shorten the time of new drug development in order to deliver life‐saving medicine to patients. Generally, drug substance materials to support the toxicology and early phase clinical study can only be manufactured after creating the final Master Cell Bank (MCB) of the clonally derived cell line, which normally takes 1–2 years. With recent advances in cell line development, cell culture process and analytical technologies, generating more homogeneous bulk/mini‐pool population with higher productivity and acceptable quality attributes has become a norm, thereby making it possible to shorten the timeline to initiate First in Human (FIH) trial by using bulk/mini‐pool generated materials to support toxicology and FIH studies. In this study, two monoclonal antibodies of different subclasses (IgG1 and IgG4) were expressed from the mini‐pool cells as well as clonally derived cell lines generated from the same mini‐pool. Cell growth, productivity, and product quality were compared between the materials generated from the mini‐pool and clonally derived cell line. The results demonstrate the similarity of the antibody products generated from mini‐pool cells and clonally derived cell lines from the same mini‐pool, and strongly support the concept and feasibility of using antibody materials produced from mini‐pool cultures for toxicology and FIH studies. The strategy to potentially shorten the FIH timeline is discussed. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1456–1462, 2017  相似文献   

2.
Generating purified protein for GLP toxicology studies (GLP‐Tox) represents an important and often rate limiting step in the biopharmaceutical drug development process. Toxicity testing requires large amounts of therapeutic protein (>100 g), typically produced in a single 500–2,500 L bioreactor, using the final CHO clonally derived cell line (CDCL). One approach currently used to save time is to manufacture GLP‐Tox material using pools of high‐producing CHO CDCLs instead of waiting for the final CDCL. Recently, we reported CHO pools producing mAb titers >7 g/L using piggyBac‐mediated gene integration (PB CHO pools). In this study, we wanted to leverage high titer PB CHO pools to produce GLP‐Tox material. A detailed product quality attribute (PQA) assessment was conducted comparing PB CHO pools to pooled Top4 CDCLs. Four mAbs were evaluated. First, we found that PB CHO pools expressed all four mAbs at high titers (2.8–4.4 g/L in shake flasks). Second, all four PB CHO pools were aged to 55 generations (Gen). All four PB CHO Pools were found to be suitable over 55 Gen. Finally, we performed bioreactor scale‐up. PB CHO pool titers (3.7–4.8 g/L) were similar or higher than the pooled Top 4 CDCLs in 5 L bioreactors (2.4–4.1 g/L). The PQAs of protein derived from PB CHO pools were very similar to pooled Top 4 CHO CDCLs according to multiple orthogonal techniques including peptide mapping analysis. Taken together, these results demonstrate the technical feasibility of using PB CHO pools to manufacture protein for GLP‐Tox. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1436–1448, 2017  相似文献   

3.
Cell cloning and subsequent process development activities are on the critical path directly impacting the timeline for advancement of next generation therapies to patients with unmet medical needs. The use of stable cell pools for early stage material generation and process development activities is an enabling technology to reduce timelines. To successfully use stable pools during development, it is important that bioprocess performance and requisite product quality attributes be comparable to those observed from clonally derived cell lines. To better understand the relationship between pool and clone derived cell lines, we compared data across recent first in human (FIH) programs at Amgen including both mAb and Fc‐fusion modalities. We compared expression and phenotypic stability, bioprocess performance, and product quality attributes between material derived from stable pools and clonally derived cells. Overall, our results indicated the feasibility of matching bioprocess performance and product quality attributes between stable pools and subsequently derived clones. These findings support the use of stable pools to accelerate the advancement of novel biologics to the clinic. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1476–1482, 2017  相似文献   

4.
Development of stable cell lines for expression of large‐molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high‐level expression is critical, and a site‐specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site‐specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site‐specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463–1467, 2017  相似文献   

5.
There are an ever-increasing number of biopharmaceutical candidates in clinical trials fueling an urgent need to streamline the cell line development process. A critical part of the process is the methodology used to generate and screen candidate cell lines compatible with GMP manufacturing processes. The relatively large amount of clone phenotypic variation observed from conventional “random integration” (RI)-based cell line construction is thought to be the result of a combination of the position variegation effect, genome plasticity and clonal variation. Site-specific integration (SSI) has been used by several groups to temper the influence of the position variegation effect and thus reduce variability in expression of biopharmaceutical candidates. Following on from our previous reports on the application of the Fer1L4 locus for SSI in CHOK1SV (10E9), we have combined this locus and a CHOK1SV glutamine synthetase knockout (GS-KO) host to create an improved expression system. The host, CHOK1SV GS-KO SSI (HD7876), was created by homology directed integration of a targetable landing pad flanked with incompatible Frt sequences in the Fer1L4 gene. The targeting vector contains a promoterless GS expression cassette and monoclonal antibody (mAb) expression cassettes, flanked by Frt sites compatible with equivalent sites flanking the landing pad in the host cell line. SSI clones expressing four antibody candidates, selected in a streamlined cell line development process, have mAb titers which rival RI (1.0–4.5 g/L) and robust expression stability (100% of clones stable through the 50 generation “manufacturing window” which supports commercial manufacturing at 12,000 L bioreactor scale).  相似文献   

6.
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR‐deficient DG44, and DUXB11‐based DHFR deficient CHO. Current Genentech commercial full‐length antibody products have all been produced in the DUXB11‐derived DHFR‐deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11‐derived DHFR‐deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11‐based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14‐day fed batch cultures in shake flasks. In contrast, the DUXB11‐based host produced ~0.1 g/l for both antibodies in the same 14‐day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ~2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:980–985, 2013  相似文献   

7.
Background

The increasing need for therapeutic monoclonal antibodies (mAbs) entails the development of innovative and improved expression strategies. Chromatin insulators have been utilized for the enhancement of the heterologous proteins in mammalian cells.

Methods and results

In the current study the Ccnb1ip1 gene insulator element was utilized to construct a novel vector system for the expression of an anti-CD52 mAb in Chinese hamster ovary (CHO) cells. The insulator containing (pIns-mAb) and control (pmAb) vectors were generated and stable cell pools were established using these constructs. The expression level in the cells created with pIns-mAb vector was calculated to be 233 ng/mL, and the expression rate in the control vector was 210 ng/mL, which indicated a 10.9% increase in mAb expression in pIns-mAb pool. In addition, analysis of mAb expression in clonal cells established from each pool showed a 10% increase in antibody productivity in the highest mAb producing clone derived from the pIns-mAb pool compared to the clone isolated from pmAb pool.

Conclusions

More studies are needed to fully elucidate the effects of Ccnb1ip1 gene insulator on recombinant therapeutic protein expression in mammalian cells. The combination of this element with other chromatin-modifying elements might improve its augmentation effect which could pave the way for efficient and cost-effective production of therapeutic drugs.

  相似文献   

8.
目的:制备人宫颈癌基因蛋白单克隆抗体并初步用于肝癌血清检测。方法:重组表达HCCR-1蛋白胞外区(第167th-360th氨基酸)进行动物免疫,用含有HCCR蛋白抗原表位的融合蛋白筛选阳性克隆。通过ELISA、Western Blot、免疫组化鉴定抗体性质,并用于肝癌血清样本检测。结果:获得3株抗人HCCR蛋白单克隆抗体,其中B3抗体特异性、灵敏度较好。ELISA结果表明B3只识别GST-HCCRep蛋白和His-HCCR蛋白,与其他蛋白没有交叉反应;B3可检测到10 mg/L的GST-HCCRep蛋白;B3抗体亲和力常数Kaff=1.86×107(L/mol);Western Blot结果表明该抗体可识别天然HCCR蛋白;免疫组化检测表明肝癌组织中有HCCR蛋白表达而正常组织中未见表达;肝癌患者血清HCCR阳性率达到75%。结论:成功制备了HCCR单克隆抗体,为建立新的肝癌早期诊断方法奠定了基础。  相似文献   

9.
Two major proteoglycan constituents (designated F1 and F2) of the cell wall of Candida albicans were separated by ion-exchange chromatography from a crude carbohydrate-rich extract (GMP), and investigated for their chemical and molecular composition, antigenicity and immunomodulatory properties in cultures of human peripheral blood mononuclear cells (PBMC). Both fractions consisted predominantly of Periodic acid-Schiff (PAS) and concanavalin A (Con A)-reactive material consisting of greater than 90% mannose, 3-5% protein and small amounts of phosphorus; each was recognized by an anti-Candida rabbit serum as well as by a monoclonal antibody (mAb AF1) directed against an oligosaccharide epitope present on the fungal cell surface. When F1 and F2 were subjected to SDS-PAGE, transblotted and stained with enzyme-conjugated mAb AF1 or Con A, most of the antibody or lectin bound to high molecular mass (greater than 200 kDa) polydisperse material, some of which was present in F2 (as in the starting GMP extract) but absent in F1. This difference was also observed in PAS-stained gels of the two fractions. The F2, but not the F1, constituent was as active as the unfractionated GMP extract in inducing lymphoproliferation, production of the cytokines interleukin-2 and interferon-gamma, and generation of cytotoxicity against a natural-killer-sensitive target cell line (K562). These immunomodulatory properties were, like those possessed by GMP, protease-sensitive and heat-stable. Treatment of PMBC cultures with a modulatory anti-T-cell receptor antibody abolished the lymphoproliferation induced by GMP and F2 but not that induced by phytohaemagglutinin, showing that the mannoprotein materials of C. albicans acted through interaction with the antigen receptor complex.  相似文献   

10.
Traditional methods to generate CHO cell lines rely on random integration(s) of the gene of interest and result in unpredictable and unstable protein expression. In comparison, site‐specific recombination methods increase the recombinant protein expression by inserting transgene at a locus with specific expression features. PhiC31 serine integrase, catalyze unidirectional integration that occurs at higher frequency in comparison with the reversible integration carried out by recombinases such as Cre. In this study, using different ratios of phiC31 serine integrase, we evaluated the phiC31 mediated gene integration for expression of a humanized IgG1 antibody (mAb0014) in CHO‐S cells. Light chain (LC) and heavy chain (HC) genes were expressed in one operon under EF1α promoter and linked by internal ribosome entry site (IRES) element. The clonal selection was carried out by limiting dilution. Targeted integration approach increased recombinant protein yield and stability in cell pools. The productivity of targeted cell pools was about 4 mg/L and about 40 µg/L in the control cell pool. The number of integrated transgenes was about 19 fold higher than the control cells pools. Our results confirmed that the phiC31 integrase leads to mAb expression in more than 90% of colonies. The productivity of the PhiC31 integrated cell pools was stable for three months in the absence of selection as compared with conventional transfection methods. Hence, utilizing PhiC31 integrase can increase protein titer and decrease the required time for protein expression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1570–1576, 2016  相似文献   

11.

Background  

Efficient expression systems exist for antibody (Ab) molecules, which allow for characterization of large numbers of individual Ab variants. In contrast, such expression systems have been lacking for soluble T cell receptors (TCRs). Attempts to generate bacterial systems have generally resulted in low yields and material which is prone to aggregation and proteolysis. Here we present an optimized periplasmic bacterial expression system for soluble single chain (sc) TCRs.  相似文献   

12.
The process of establishing high-producing cell lines for the manufacture of therapeutic proteins is usually both time-consuming and laborious due to the low probability of obtaining high-producing clones from a pool of transfected cells and slow cell growth under the strong selective pressure of screening to identify high-producing clones. We present a novel method to rapidly generate more high-producing cells by accelerating transgene amplification. A small interfering RNA (siRNA) expression vector against ataxia telangiectasia and Rad3 related (ATR), a cell cycle checkpoint kinase, was transfected into Chinese hamster ovary (CHO) cells. The influences of ATR downregulation on gene amplification and the productivity were investigated in CHO cells producing green fluorescent protein (GFP) and secreting monoclonal antibody (mAb). The ATR-downregulated cells showed up to a 6-fold higher ratio of GFP-positive cells than that of the control cell pool. Moreover, the downregulated mAb-producing cells had about a 4-fold higher specific production rate and a 3-fold higher volumetric productivity as compared with the mock cells. ATR-downregulated cells showed a much faster increase in transgene copy numbers during the gene amplification process via methotrexate (MTX) treatment in both GFP- and mAb-producing cells. Our results suggest that a pool of high-producing cells can be more rapidly generated by ATR downregulation as compared with conventional gene amplification by MTX treatment. This novel method may be a promising approach to reduce time and labor in the process of cell line development.  相似文献   

13.
Purpose  There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities. Thus, the first aim of this study was to establish a human tumor-bearing mouse model in which human immune cells can engraft and mediate ADCC, but where the endogenous mouse immune cells cannot mediate ADCC. The second aim was to evaluate ADCC mediated in these humanized mice by the defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody (mAb) which we have developed and which is now in phase I clinical trials. Experimental design  NOD/Shi-scid, IL-2Rγnull (NOG) mice were the recipients of human immune cells, and CCR4-expressing Hodgkin lymphoma (HL) and cutaneous T-cell lymphoma (CTCL) cell lines were used as target tumors. Results  Humanized mice have been established using NOG mice. The chimeric defucosylated anti-CCR4 mAb KM2760 showed potent antitumor activity mediated by robust ADCC in these humanized mice bearing the HL or CTCL cell lines. KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in HL-bearing humanized mice. Conclusions  Anti-CCR4 mAb could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. In addition, using our humanized mice, we can perform the appropriate preclinical evaluation of many types of antibody based immunotherapy.  相似文献   

14.
Polysialic acid is a linear homopolymer of α2–8-linked sialic acids attached mainly onto glycoproteins. Cell surface polysialic acid plays roles in cell adhesion and differentiation events in a manner that is often dependent on the degree of polymerization (DP). Anti-oligo/polysialic acid antibodies have DP-dependent antigenic specificity, and such antibodies are widely utilized in biological studies for detecting and distinguishing between different oligo/polysialic acids. A murine monoclonal antibody mAb735 has a unique preference for longer polymers of polysialic acid (DP >10), yet the mechanism of recognition at the atomic level remains unclear. Here, we report the crystal structure of mAb735 single chain variable fragment (scFv735) in complex with octasialic acid at 1.8 Å resolution. In the asymmetric unit, two scFv735 molecules associate with one octasialic acid. In both complexes of the unit, all the complementarity-determining regions except for L3 interact with three consecutive sialic acid residues out of the eight. A striking feature of the complex is that 11 ordered water molecules bridge the gap between antibody and ligand, whereas the direct antibody-ligand interaction is less extensive. The dihedral angles of the trisialic acid unit directly interacting with scFv735 are not uniform, indicating that mAb735 does not strictly favor the previously proposed helical conformation. Importantly, both reducing and nonreducing ends of the bound ligand are completely exposed to solvent. We suggest that mAb735 gains its apparent high affinity for a longer polysialic acid chain by recognizing every three sialic acid units in a paired manner.  相似文献   

15.
《Cytotherapy》2014,16(1):122-134
BackgroundEpstein-Barr virus (EBV) infection is a major cause of morbidity following hematopoietic stem cell transplantation. EBV-infected B cells may not respond to rituximab treatment and may lead to a life-threatening post-transplantation lymphoproliferative disorder. Adoptive cellular immunotherapy using EBV-lymphoblastoid cell lines (LCL) as stimulating antigen has proved effective in restoring specific immunity. However, EBV presents several immunodominant antigens, and developing a swift and effective clinical-grade immunotherapy relies on the definition of a Good Manufacturing Practices (GMP) universal stimulating antigen.MethodsPeripheral blood mononuclear cells (PBMCs) from six donors with a cellular immune response against EBV were immunoselected after stimulation with a new EBV antigen associated with an EBNA3 peptide pool.ResultsAfter immunoselection, a mean of 0.53 ± 0.25 × 106 cells was recovered consisting of a mean of 24.77 ± 18.01% CD4+-secreting interferon (IFN)-γ and 51.42 ± 26.92% CD8+-secreting IFN-γ. The T memory stem cell sub-population was identified. EBV-specific T cells were expanded in vitro, and their ability to secrete IFN-γ and to proliferate after re-stimulation with EBV antigen was confirmed. A specific lysis was observed against autologous target cells pulsed with EBV peptide pools (57.6 ± 11.5%) and against autologous EBV-LCL (18.3 ± 7.3%). A mean decrease of 94.7 ± 3.3% in alloreactivity against third-party donor mononuclear cells with EBV-specific T cells was observed compared with PBMCs before selection.ConclusionsOur results show that a combination of peptide pools including EBNA3 is needed to generate EBV-specific T cells with good specific cytotoxicity and devoid of alloreactivity, but as yet GMP grade is not fully achieved.  相似文献   

16.
During early preclinical development of therapeutic proteins, representative materials are often required for process development, such as for pharmacokinetic/pharmacodynamic studies in animals, formulation design, and analytical assay development. To rapidly generate large amounts of representative materials, transient transfection is commonly used. Because of the typical low yields with transient transfection, especially in CHO cells, here we describe an alternative strategy using stable transfection pool technology. Using stable transfection pools, gram quantities of monoclonal antibody (Mab) can be generated within 2 months post‐transfection. Expression levels for monoclonal antibodies can be achieved ranging from 100 mg/L to over 1000 mg/L. This methodology was successfully scaled up to a 200 L scale using disposable bioreactor technology for ease of rapid implementation. When fluorescence‐activated cell sorting was implemented to enrich the transfection pools for high producers, the productivity could be improved by about three‐fold. We also found that an optimal production time window exists to achieve the highest yield because the transfection pools were not stable and productivity generally decreased over length in culture. The introduction of Universal chromatin‐opening elements elements into the expression vectors led to significant productivity improvement. The glycan distribution of the Mab product generated from the stable transfection pools was comparable to that from the clonal stable cell lines. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
18.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

19.
We have generated a chimeric protein molecule composed of the alpha- and beta-chains of the MHC class II I-E molecule fused to antibody V regions derived from anti-human CD4 mAb MT310. Expression vectors were constructed containing the functional, rearranged gene segments coding for the V region domains of the antibody H and L chains in place of the first domains of the complete structural genes of the I-E alpha- and beta-chains, respectively. Cells transfected with both hybrid genes expressed a stable protein product on the cell surface. The chimeric molecule exhibited the idiotype of the antibody MT310 as shown by binding to the anti-idiotypic mAb 20-46. A protein of the anticipated molecular mass was immunoprecipitated with anti-mouse IgG antiserum. Furthermore, human soluble CD4 did bind to the transfected cell line, demonstrating that the chimeric protein possessed the binding capacity of the original mAb. Thus, the hybrid molecule retained: 1) the properties of a MHC class II protein with regard to correct chain assembly and transport to the cell surface; as well as 2) the Ag binding capacity of the antibody genes used. The generation of hybrid MHC class II molecules with highly specific, non-MHC-restricted binding capacities will be useful for studying MHC class II-mediated effector functions such as selection of the T cell repertoire in thymus of transgenic mice.  相似文献   

20.
目的寻找能调节T细胞功能的相关分子,进行与T细胞介导的自身免疫性疾病相关的研究。方法收集BALB/c小鼠脾细胞,免疫Wistar大鼠,进行细胞融合,建立杂交瘤细胞系。筛选得到43株能调节T细胞功能的杂交瘤细胞系,对其中一株最能抑制T细胞增殖的杂交瘤细胞系进行了进一步的深入研究。结果显示其目标分子是CD98重链,同时后续实验显示抗CD98单克隆抗体能抑制纤连蛋白介导的细胞分布,但不影响氨基酸转运。而且混合淋巴细胞反应显示该抗体能显著抑制T细胞增殖反应。结论抗CD98单克隆抗体能有效抑制T细胞增殖,有望将本抗体用于T细胞介导的自身免疫性疾病的相关预防及治疗中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号