首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gamboa  Miguel A.  Laureano  Sugei  Bayman  Paul 《Mycopathologia》2003,156(1):41-45
Endophytic fungi inhabit living plant tissues without causing disease symptoms. Although abundant, the extent of their contribution to fungal biodiversity remains unclear. Since endophytic fungi are poorly known, especially in the tropics, current estimates of fungal species are probably conservative. Here we tested strategies for sampling endophytic fungi in tropical plants. We compared the number of fungi isolated from 400 mm2 leaf pieces that were divided into increasingly small fragments. Leaf pieces were surface-sterilized, cut into fragments and plated on culture media. For a given area, cutting leaf pieces into smaller fragments significantly increased the number of fungal morphospecies recovered. There was a strong linear relationship between size of fragments and number of fungi isolated. By extrapolation, an estimated 16 ± 3 fungi could be recovered from a 2 × 2 cm leaf piece, using infinitely small fragments. This represents a large part of the fungal diversity estimated to exist in leaf endophytes in a population. We conclude that reducing the size and increasing the number of leaf fragments will increase the number of fungal species isolated. This strategy will help to estimate real values of endophytic fungal diversity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species.  相似文献   

3.
Increasing evidence suggests that degradation of biodiversity in human populated areas is a threat for the ecosystem processes that are relevant for human well-being. Fungi are a megadiverse kingdom that plays a key role in ecosystem processes and affects human well-being. How urbanization influences fungi has remained poorly understood, partially due to the methodological difficulties in comprehensively surveying fungi. Here we show that both aerial and soil fungal communities are greatly poorer in urban than in natural areas. Strikingly, a fivefold reduction in fungal DNA abundance took place in both air and soil samples already at 1 km scale when crossing the edge from natural to urban habitats. Furthermore, in the air, fungal diversity decreased with urbanization even more than in the soil. This result is counterintuitive as fungal spores are known to disperse over large distances. A large proportion of the fungi detectable in the air are specialized to natural habitats, whereas soil fungal communities comprise a large proportion of habitat generalists. The sensitivity of the aerial fungal community to anthropogenic disturbance makes this method a reliable and efficient bioindicator of ecosystem health in urban areas.Subject terms: Community ecology, Fungal ecology  相似文献   

4.
本文研究了兰科石斛属鼓槌石斛的地理分布与菌根真菌区系组成的相关性。采用克隆文库技术对云南省西双版纳和临沧市两个地区的8份野生鼓槌石斛根部样品进行了分析。结果表明,共从两个地区的鼓槌石斛根部获得了14个真菌的可操作分类单元(OTU),主要隶属于胶膜菌科Tulasnellaceae和小纺锤菌目Atractiellales。分析鼓槌石斛对菌根真菌的专一性和偏好性发现,鼓槌石斛对菌根真菌专一性较低,每个植株都能同时与多种菌根真菌共生;不同地理分布的鼓槌石斛菌根真菌类群存在明显差异,两个地区的鼓槌石斛的菌根真菌中只有1个OTU是相同的,其余均不同。说明菌根真菌可能和鼓槌石斛的生态适应存在一定的相关性。  相似文献   

5.
Aims: To describe a new molecular technique for the assessment of fungal diversity in the air. Methods and Results: Air samples were collected every week in a henhouse in France during a 15‐week period. After air sampling, the collecting membrane was diluted, and the liquid was used for subsequent cultivation and molecular analysis: PCR‐temperature temporal gradient electrophoresis (TTGE), which has already been used for the identification of fungal species in air samples and PCR‐denaturing high‐performance liquid chromatography (D‐HPLC), a new technique for the analysis of complex microbial populations. D‐HPLC profiles were reproducible from run‐to‐run, and several fungal organisms could be identified at the species level by sequencing. Conclusions: PCR‐D‐HPLC enabled the identification of fungal species (both Ascomycota and Basidiomycota) that may be encountered in air. The new technique allowed the detection of more fungal species than did the PCR‐TTGE technique. However, some fungal species were detected only by PCR‐TTGE, suggesting that PCR‐D‐HPLC and PCR‐TTGE are complementary. Significance and Impact of the Study: PCR‐D‐HPLC represents a considerable saving in time over currently available procedures for detection and identification of fungal organisms in air. However, the fungal diversity detected by PCR‐D‐HPLC or by PCR‐TTGE was lower than that revealed by culture.  相似文献   

6.
We investigated the effects of heavy metals on leaf litter decomposition in streams. Leaves were immersed (10 days) at a reference (R) and a metal‐impacted (I) site and exposed in microcosms with increased Zn, Mn or Fe content, and to stream water from site R or I. Fungal biomass was higher in microcosms with leaves colonized at I and water from R. Fungal sporulation was higher in microcosms with leaves and water from R. Concentrations of 4.9, 9.6 and 5 ppm of Zn, Mn and Fe decrease fungal sporulation. The number of fungal species (spore counts and DGGE fingerprints) was lower in leaves colonized at site I. Cluster analyses of DGGE showed that Fe was the metal that most altered the structure of fungal community. Our results suggest that metal pollution affect leaf‐associated fungi depending on metal identity and concentration, and effects appear to be less pronounced in metal‐adapted communities. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

8.
Gai JP  Feng G  Cai XB  Christie P  Li XL 《Mycorrhiza》2006,16(3):191-196
We report for the first time the arbuscular mycorrhizal (AM) status of native plant species and AM fungal diversity in the grasslands of southern Tibet. A total of 51 soil samples were collected from the rhizospheres of the dominant plant species, and AM fungal structures were observed in 18 (82%) of 22 plant species examined. Vesicles and aseptate hyphae were the structures most frequently observed in the plant roots. After trap culture for 5 months, 25 AM fungal taxa were identified in the soil samples collected, of which nine belonged to Glomus, ten to Acaulospora, one to Entrophospora and five to Scutellospora. The frequency of occurrence of different genera and species varied greatly. Glomus was the dominant genus, and the most frequent and abundant species was Glomus mosseae. Over the whole sampling area, spore density in the rhizosphere soil of different host plant species ranged from 2 to 66 per 20 g air-dried soil. Overall AM fungal species richness was 2.10 and species diversity was 2.35. AM fungal diversity was also compared among the four different land use types (farmland and normal, disturbed and highly disturbed montane scrub grassland). Spore densities in the farmland and normal grassland were much higher than in the grasslands that had been degraded to varying degrees. The species richness in normal grassland was the highest of the four land use types examined. Species diversity varied from 1.99 to 0.94 and was highest in normal grassland, intermediate in degraded grassland and farmland, and lowest in the highly disturbed grassland.  相似文献   

9.
In this study, the effect of the thermophilic fungi of composts was analysed on the fungal composition of the air above. Air samples were collected with an Andersen air sampler at 1.5 m height in three large industrial composting facilities treating different waste types. Repetition was collected on three calm and rain-free days of three consecutive weeks in October 2011, in January, April and July 2012; five plates were exposed successively per sampling day. Compost samples were also collected (averaging 1 kg/compost piles). Air and compost samples were cultured at 50 °C. The thermophilic fungal composition of the air near the compost piles of different waste types differed significantly (p < 0.05) from that of the control site above a grassland ecosystem at each sampling time. Seasonal differences could be detected regarding the total number of thermophilic fungi in the air near the agricultural and horticultural compost types, but smaller differences were found near the municipal compost type. A total of 13 and 11 fungal species were detected in the compost and air samples where the dominant species were Thermomyces lanuginosus and Rasamsonia emersonii, respectively. The concentration of airborne thermophilic fungi was higher near the horticultural compost type and lower near the municipal compost. The results suggest that the differences between the incidences of some species in composts and associated aerosols refer to spore ontogeny and biological mechanisms of spore liberation.  相似文献   

10.
This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.  相似文献   

11.
Aims: The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge‐derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Methods and Results: Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate‐based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5‐dinitrosalicylic acid (DNSA)‐based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Conclusions: Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine‐derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Significance and Impact of the Study: Marine‐derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.  相似文献   

12.
We conducted line route censuses of fungal fruiting bodies from August to September in 2005 and 2006 along ridges and valleys and compared the differences in the encounter rates of fungal fruiting bodies (= fruiting bodies seen per census kilometer) between types of topography and between fungal functional groups (i.e., ectomycorrhizal and saprobic fungi) in warm temperate evergreen broad-leaved forests on Yakushima Island, Japan. We found 251 fungal fruiting bodies (26 families, 50 genera, and 65 species) in total, including 51 bodies from Tricholomataceae, 41 from Russulaceae, 25 from Boletaceae, and 19 from Amanitaceae. The encounter rate of ectomycorrhizal fungi was greater at the ridge route (26.7 unit/km) than at the valley route (8.7 unit/km) and that of saprobic fungi was greater at the valley route (25.0 unit/km) than at the ridge route (12.5 unit/km). In addition, we conducted 7-year intermittent sampling and identified 40 families, 96 genera, and 142 species. The topography-specific emergence pattern of the intermittent sampling method was similar to that of the line census method. The fungal species composition in this study was possibly affected by a topographic gradient for both fungal functional groups through soil moisture, nutrient availability, and host tree distribution.  相似文献   

13.
In recent years, Mycosphaerella leaf disease (MLD) has become very common in Eucalyptus globulus plantations in Galicia, northwest Spain. The aetiology of MLD is complex and is associated with several species of Mycosphaerella and Teratosphaeria. A survey of the fungal mycobiota associated with juvenile and adult leaves and with leaf litter of the same trees in MLD‐affected plantations was made. The goal was to identify pathogens and endophytes, to determine whether the mycobiota of each leaf type differed and whether leaf litter might be a reservoir of MLD inoculum. Fungi belonging to 113 different species were isolated from the leaves of juvenile and adult trees sampled at 10 locations; 81 species occurred in juvenile and 65 in adult leaves. The average number of species obtained from juvenile leaves was significantly greater (P > 0.01) compared to adult leaves. This difference suggested that juvenile leaves are not only more susceptible to a group of pathogens, but to a wide range of fungi. Therefore, a general resistance mechanism might be lacking or be less effective in juvenile than in adult leaves. Several pathogenic species were identified in both leaf types. Leaf litter and living leaf mycobiotas were very different. However, some of the species they shared were MLD pathogens, suggesting that leaf litter could contribute to the inoculum of MLD.  相似文献   

14.
Ecosystem biomass, soil conditions and the diversity of different taxa are often interrelated. These relationships could originate from biogeographic affinity (varying species pools) or from direct ecological effects within local communities. Disentangling regional and local causes is challenging as the former might mask the latter in natural ecosystems with varying habitat conditions. However, when the species pool contribution is considered in statistics, local ecological effects might be detected. In this study we disentangle the indirect effects of the species pool and direct ecological effects on the complex relationships among wood volume, soil conditions and diversities of different plant and fungal groups in 100 old‐growth forest sites (10 × 10 m) at the border of boreal and nemoral zones in northern Europe. We recorded all species for different vegetation groups: woody and herbaceous vascular plants, terricolous and epiphytic bryophytes and lichens. Fungal communities were detected by DNA‐based analyses from soil samples. Above‐ground wood volume was used as a proxy of biomass. We measured soil pH and nutrient content and obtained modelled climate parameters for each site. Species pool effect was considered by dividing sites into boreal and nemoral groups based on community composition. In order to disentangle direct and indirect effects, we applied variation partitioning, and raw and partial correlations. We found many significant positive relationships among studied variables. Many of these relationships were associated to boreal and nemoral species pools, thus indicating that biogeographic affinity of interacting plants and fungi largely defines forest diversity and functioning. At the same time, several relationships were significant also after considering biogeography: woody plant and ectomycorrhizal fungi diversities with wood volume, many plant and fungal groups with each other, or with soil conditions. These direct ecological interactions could be considered in forestry practices to achieve both economic gain and maintenance of biodiversity.  相似文献   

15.
  • Fungi have essential functions in plant health and performance. However, the plant-associated functions of many cultured fungi have not been established in detail.
  • Here, the fungal species diversity in Salvia miltiorrhiza roots and rhizosphere was assessed for the first time using culturomics and high-throughput sequencing. We present a comprehensive functional metagenomic analysis of these fungi and verified activity of cellulase and chitinase predicted in the metagenomic analysis.
  • We first collected and cultured fungi from the root and rhizosphere of S. miltiorrhiza. We found 92 species across 37 families and five phyla, with Ascomycota being dominant. Many rDNA internal transcribed spacer sequences could not be assigned to lower taxonomic levels. There were 19 genera of endophytic fungi and 37 genera of rhizosphere fungi. The culturomics approach had lower taxonomic diversity than high-throughput sequencing, but some fungi were only found in cultures. Structural analyses indicated that the dominant species differed in cultured and non-cultured samples at other levels, apart from the phylum level. Functional analysis mapped 223 carbohydrate enzyme families and 393 pathways in the CAZy and KEGG databases, respectively. The most abundant families were glycoside hydrolases and those involved in carbohydrate metabolism. As predicted by metagenomics, we experimentally verified cellulase and chitinase activity for 29 and 74 fungi, respectively.
  • We provide the first evidence of biomass recycling by fungi that are associated with plants. Culturing is essential to reveal the hidden microbial community and critical functions in plant–microbe interactions.
  相似文献   

16.
长白山森林土壤真菌区系研究   总被引:3,自引:2,他引:1  
本研究对长白山自然保护区不同海拔、林型、土壤剖面的森林土壤真菌进行分离鉴定,从而为建立森林真菌资源库提供种质资源,并为森林生物资源管理提供科学依据。在该地区6个不同林型中,采用“之”形路线及土壤剖面取样法多点采集土壤样品,按照标准方法初步分离鉴定出真菌28个属,其中包括1个中国新纪录属,即球壳属(Sphaerodes)。研究结果表明,土壤真菌区系与森林(植被)类型、土壤剖面层次密切相关:美人松落叶松林、红松阔叶林和红松云冷杉林土壤真菌的种类明显多于鱼鳞云冷杉林、岳桦林和高山苔原带;土壤不同剖面层次上的真菌种群数量高低依次为落叶层>腐殖质层>土壤层;同一林型下不同土壤层面上优势菌属的组成也具有一定的差异,且不同层面上也存在着其特有的优势菌属。  相似文献   

17.
据估计自然界中真菌有220万到380万种,目前已经描述的真菌仅约12万种,不超过总数的8%。大量基于高通量测序的研究显示,自然环境中蕴藏的真菌多样性可能远远超出我们的预估。然而基于传统的分离培养技术的研究中,大量真菌却因难以获得纯培养而未被认知。因此探索新的真菌分离技术有助于提高我们对自然界中真菌多样性的认识,并获得可供开发利用的全新生物遗传资源。本研究以淡水湖底泥为调查对象,从优化培养条件和原位培养两个方面探索未培养真菌的分离培养方法,并与传统培养方法及免培养的高通量测序结果比较,评估各方法的分离效果。结果显示,低温分离显著影响获得的真菌组成,有利于嗜冷真菌的获得;无论在4℃低温还是25℃常温条件下,在培养基中添加维生素都能显著提高分离获得的真菌多样性,在属级水平上提高比例分别高达207%和81%。相较于传统25℃稀释平板法,基于分离芯片技术的原位培养在分离纯化效率、未知真菌捕获率以及物种多样性和均匀度等方面具有显著优势,显示原位培养技术在未来真菌分离培养中可能具有极大应用前景。  相似文献   

18.
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing‐season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time‐points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing‐season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter‐active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between‐year variation. Our study indicates that addressing seasonal changes requires replication over several years.  相似文献   

19.
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β‐diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N‐related niche by quantifying net fluxes of , and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance–decay curve) on species assemblages. Species turnover was significant (β1/2 = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m2/s for Tomentella species. The lowest uptake rates of were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m2/s), followed by Cortinarius species (60 nmol/m2/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m2/s). These results suggest uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology.  相似文献   

20.
Aims Spatial patterns of fungal populations are affected by plant distribution, abiotic factors, fungal dispersal ability and inter-species interactions. While several studies have addressed spatial patterns of some mycorrhizal, saprotrophic and pathogenic fungi, the method based on fruit-body surveys is not efficient and unreliable to study the spatial pattern of root-associated fungal species because most fungi in plant roots do not have sporocarps and cannot be identified based only on morphological traits. Our aims are (i) to determine the spatial pattern of common root-associated fungi; (ii) to evaluate whether the abundance and spatial pattern of root-associated fungi and categories of fungi, reflect their biotic and abiotic niche constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号