首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A change in the mass and composition of organic matter in the phytomass and soil of pine forests affected by mid-intensity and high-intensity fires is considered. It is shown that a mid-intensity fire did not catastrophically affect the pool of carbon in the middle-aged pine forests of the subtaiga forest-steppe and the taiga higher belt areas in the southwest of the Baikal region. Five years after a high-intensity fire, the carbon reserves in a mature taiga pine forest remain 20% lower than in an unaffected pine forest. Compared with the reference figures, the mass of C and soil cover in the stand phytomass decreased by 18 and 63%, respectively. In the easily mineralizable fraction of organic matter, the reserves of carbon decreased by half owing to burnout of waste wood (by 64%) and root detritus (by 50% compared with the reference tree stand figures).  相似文献   

2.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

3.
The stock and structure of organic substances in the pine tree plantations on the overburden dumps of open-cut coal mines in Middle Siberia have been determined. It has been shown that the forming forest biogeocenoses differ from the natural phytocenoses and soils of the forest landscapes in the structure of the carbon pool and its distribution between the vegetation and soil components. In artificial forest ecosystems, the bulk of the plant component is accumulated in the aboveground part of the forest stand (40–59%). The aboveground grass cover contains only 0.1–1.4% of the total phytomass stock of the ecosystem. The annual accumulation of organic substances in the initial soils amounts to 0.28–1.45 t/ha.  相似文献   

4.
Chertov  O. G.  Komarov  A. S.  Tsiplianovsky  A. M. 《Plant and Soil》1999,213(1-2):31-41
The individual-based combined forest model EFIMOD including the soil-sub model SOMM has been used for the simulation of Scots pine stand growth and soil organic matter (SOM) accumulation on a humus-free bare mineral surface. The growth of Scots pine plantation, with an initial density of 10 000 trees ha−1 and average tree biomass of 0.01 kg was simulated for 50 yr under Central European climatic conditions (i) with varying atmospheric nitrogen inputs and (ii) different rates of initial application of raw undecomposed organic material or compost, on humus-free parent material. The accumulation of typical raw humus was simulated in all cases. The accumulation was most intensive in the simulation of high atmospheric nitrogen input. The humus pool in the mineral topsoil was small but achieved its maximum value with compost application. SOM nitrogen accumulation was scant in all cases, except the compost applications with low atmospheric nitrogen input. No statistically significant differences of SOM and stand parameters were found between variants without organic matter and those with low input of organic manure. However, the maximum relative rate of SOM and nitrogen accumulation was found in the scenario without organic manure, under slowly growing unstable Scots pine plantation. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Questions: (1) How do extreme climatic events and climate variability influence radial growth of conifers (silver fir, Norway spruce, Scots pine)? (2) How do elevation and soil water capacity (SWC) modulate sensitivity to climate? Location: The sampled conifer stands are in France, in western lowland and mountain forests, at elevations from 400 to 1700 m, and an SWC from 50 to 190 mm. Methods: We established stand chronologies for total ring width, earlywood and latewood width for the 33 studied stands (985 trees in total). Responses to climate were analysed using pointer years and bootstrapped response functions. Principal component analysis was applied to pointer years and response function coefficients in order to elucidate the ecological structure of the studied stands. Results: Extreme winter frosts are responsible for greater growth reductions in silver fir than in Norway spruce, especially at the upper elevation, while Scots pine was the least sensitive species. Exceptional spring droughts caused a notable growth decrease, especially when local conditions were dry (altitude<1000 m and SWC<100 mm for silver fir, western lowlands for Scots pine). Earlywood of silver fir depended on previous September and November and current‐year February temperature, after which current June and July water supply influenced latewood. Earlywood of Norway spruce was influenced by previous September temperature, after which current spring and summer droughts influenced both ring components. In Scots pine, earlywood and latewood depended on the current summer water balance. Local conditions mainly modulated latewood formation. Conclusions: If the climate becomes drier, low‐elevation dry stands or trees growing in western lowlands may face problems, as their growth is highly dependent on soil moisture availability.  相似文献   

6.
J. Baar 《Mycorrhiza》1997,7(2):89-94
 The effect on ectomycorrhizal root growth in a nitrogen-enriched planted stand of Scots pine (Pinus sylvestris L.) on podzolic sandy soil to manipulation of litter and humus layers (removal, doubling and control treatments) was examined, and compared to ectomycorrhizal root growth in an untreated naturally established Scots pine stand on nutrient-poor non-podzolic sandy soil. Half a year after manipulation of litter and humus layers in the planted stand, ingrowth-cores to a depth of 60 cm were installed in both stands. Scots pine roots were sampled four times during two growing seasons. Ectomycorrhizal roots were found at all sampled soil depths to 60 cm in all plots. Root growth and ectomycorrhizal development were greater in the naturally established stand than in all plots in the planted stand. Numbers of ectomycorrhizal root tips in the litter and humus removal plots were generally higher than in the control plots in the planted stand until May 1992. Doubling litter and humus did not significantly affect root length or the numbers of ectomycorrhizal root tips. The N dissolved , NH4 + and NO3 concentrations and the organic matter content in the upper 5 cm of the mineral soil in the planted stand on podzolic sandy soil were generally higher and the pH significantly lower than in the naturally established stand on non-podzolic sandy soil. Root growth and ectomycorrhizal development in the secondary stand may have been negatively affected by the chemical composition of the podzolic sandy soil. Accepted: 19 March 1997  相似文献   

7.
Kurka  Anne-Marie  Starr  Michael 《Plant and Soil》1997,195(2):273-281
The relationship between the decomposition of cellulose placed on and buried in the forest floor and various tree stand characteristics was studied at sites with minimal anthropogenic influence. The 22 study sites, including both forested upland and peatland plots, were clustered in 4 catchments between 61°–69° N in Finland. The stands were 60 to 320 years old and composed of varying proportions of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and deciduous species (mainly t Betula spp.). Cellulose strips (softwood pulp) were placed on the forest floor surface and buried at four depths down to 5 cm for two 1-year periods and the weight loss measured. Decomposition did not significantly correlate with stand age, but was strongly and positively correlated with stand basal area, mean tree height and stem volume. This was valid at all depths, and even after differences due to climate between catchments had been taken into account. The stem volume of Scots pine dominated plots had the highest correlation. Our results showed that decomposition of organic matter on and in the forest floor is related to the stand characteristics. This relationship should be considered when comparing soil processes different stands, even when comparing stands of the same tree species composition.  相似文献   

8.
为了了解北亚热带东部地区天然次生林转变成杉木(Cunninghamia lanceolata)人工林对土壤活性有机碳库的影响, 以浙江省富阳市庙山坞森林生态系统定位研究站杉木人工林和天然次生林为研究对象, 对达到成熟林状态的两种林分类型0-60 cm内各土层土壤活性有机碳含量进行了比较研究。结果表明: 1)天然次生林土壤总有机碳、易氧化有机碳、水溶性有机碳和轻组有机质含量均高于杉木人工林, 与人工杉木林相比, 增幅分别为19.0%-32.6%、0.8%-30.3%、3.8%-54.1%和6.3%-38.6%, 且在0-10和10-20 cm土层差异显著(p < 0.05) (水溶性有机碳仅在0-10 cm土层差异显著); 2)杉木人工林土壤水溶性有机碳与易氧化碳占总有机碳的比率均高于天然次生林; 3)两个林分土壤水溶性有机碳、易氧化碳和轻组有机质与总有机碳含量均呈现极显著相关, 且天然次生林土壤易氧化碳、轻组有机质与总有机碳的相关系数均大于杉木人工林; 4)土壤有机碳、水溶性有机碳、易氧化碳和轻组有机质与土壤养分(全氮、水解氮、速效磷、速效钾、速效钙和速效镁)的相关性均达到显著(p < 0.05)或极显著(p < 0.01)水平。  相似文献   

9.
The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.  相似文献   

10.
Diversity and storage function of mycorrhiza as well as soil organoprofile formation were investigated in a chronosequence of a pure Scots pine (Pinus sylvestris L.) stand, of Scots pine stands that were underplanted with beech (Fagus sylvatica L.) and in three pure beech stands of different age. Mycorrhiza diversity was higher in the pure beech stands compared to the pure pine stand. Beech and pine trees in the mixed stands had similar dominant mycorrhiza morphotypes. However, trees in two of the three pure beech stands were mycorrhized with other types. Mycorrhizal abundance and nutrient amounts of mycorrhizae associated with beech trees were higher in the mixed and in the pure beech stands compared to pine mycorrhizae indicating that nutrient uptake was higher in older beech than in older pine trees. Humus quality varied from pine to beech stands. Plant litter storage in the humus layer was highest in the youngest mixed stand and lowest in the oldest beech stand. Humus forms changed from moder grass-type in the pure Scots pine stand to mor-like moder and moder rich in fine humus with increasing age of beeches in the mixed stands. The older beech stands were characterised by oligomull and mull-like moder as the dominating humus forms. The ecologically favourable humus forms, i.e., nutrient rich humus forms in the older beech stands correlate well with the higher mycorrhizal diversity and abundance as well as the higher nutrient storage of their mycorrhizae in these stands. The results are also discussed with regard to the 'base-pump effect' of beech trees.  相似文献   

11.
Soil-surface CO2 efflux and its spatial and temporal variation were investigated in a southern Mediterranean, mixed pine-oak forest ecosystem on the northern slopes of the Sierra de Guadarrama in Spain from February 2006 to July 2006. Measurements of soil CO2 efflux, soil temperatures, and moisture were conducted in nine 1963-m2 sampling plots distributed in a gradient around the ecotone between Pinus sylvestris L. and Quercus pyrenaica Lam. forest stands. Total soil organic matter, Walkey-Black C, particulate organic matter, organic matter fraction below 53 microm, total soil nitrogen content, total soil organic carbon content, and pH were also measured under three representative mature oak, pine, and mixed pine-oak forest stands. Soil respiration showed a typical seasonal pattern with minimums in winter and summer, and maximums in spring, more pronounced in oak and oak-pine stands. Soil respiration values were highest in pine stands during winter and in oak stands during spring and summer. Soil respiration was highly correlated with soil temperatures in oak and pine-oak stands when soil moisture was above a drought threshold of 15%. Below this threshold value, soil moisture was a good predictor of soil respiration in pine stands. Greater soil organic matter, particulate organic matter, Walkey-Black C, total organic C, and total N content in pine compared to oak sites potentially contributed to the greater total soil CO2 efflux in these stands during the winter. Furthermore, opposing trends in the organic matter fraction below 53 microm and soil respiration between plots suggest that in oak stands, the C forms are less affected by possible changes in use. The effects of soil properties on soil respiration were masked by differences in soil temperature and moisture during the rest of the year. Understanding the spatial and temporal variation even within small geographic areas is essential to assess C budgets at ecosystem level accurately. Thus, this study bears important implications for the study of large-scale ecosystem dynamics, particularly in response to climatic change.  相似文献   

12.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   

13.
Old forests are generally believed to exhibit low net primary productivity (NPP) and therefore to be insignificant carbon sinks. This relationship between age and NPP is based, in part, on the hypothesis that the biomass of respiratory tissues such as sapwood increases with age to a point where all photosynthate is required just to maintain existing tissue. However, this theoretical connection between respiration:assimilation ratios and forest productivity is based on age-dependent trends in the sapwood:leaf ratios of individual trees and even-aged stands; it does not take into account such processes in natural forests as disproportional increases in shade-tolerant species over time and multiple-age cohorts. Ignoring succession and structural complexity may lead to large underestimates of the productivity of old forests and inaccurate estimates of the ages at which forest productivity declines. To address this problem, we compared biomass allocation and productivity between whitebark pine, a shade-intolerant, early-successional tree species, and subalpine fir, a shade-tolerant, late-successional species, by harvesting 14 whitebark pines and nine subalpine firs that varied widely in dbh and calculating regression models for dbh vs annual productivity and biomass allocation to leaves, sapwood, and heartwood. Late-successional subalpine fir allocated almost twice as much biomass to leaves as early-successional whitebark pine. Subalpine firs also had a much lower allocation to sapwood and higher growth rates across all tree sizes. We then modeled biomass allocation and productivity for 12 natural stands in western Montana that were dominated by subalpine fir and whitebark pine varying in age from 67 to 458 years by applying the regressions to all trees in each stand. Whole-stand sapwood:leaf ratios and stand productivity increased asymptotically with age. Sapwood:leaf ratios and productivity of whitebark pine in these stands increased for approximately 200–300 years and then decreased slowly over the next 200 years. In contrast, sapwood:leaf ratios of all sizes of subalpine fir were lower than those of pine and productivity was higher. As stands shifted in dominance from pine to fir with age, subalpine fir appeared to maintain gradually increasing rates of whole-forest productivity until stands were approximately 400 years old. These results suggest that forests such as these may continue to sequester carbon for centuries. If shade-tolerant species that predominate late in succession maintain high assimilation-to-respiration ratios in other forests, we may be underestimating production in old forests, and current models may underestimate the importance of mature forests as carbon sinks for atmospheric CO2 in the global carbon cycle. Received 16 February 1999; accepted 24 November 1999.  相似文献   

14.
以我国亚热带东部地区48年生樟树人工林为对象,并以未抚育林分为对照,分析了不同林下植被处理对两种林分0~60 cm土层土壤活性有机碳含量及其比率的影响.结果表明: 与对照相比,抚育林分土壤总有机碳和易氧化碳含量均下降,且在0~10和10~20 cm土层之间的差异达到显著水平;而水溶性有机碳(0~10 和10~20 cm土层除外)和轻组有机质含量升高,但差异不显著.抚育林分土壤水溶性有机碳占总有机碳的比率高于对照,而易氧化碳占总有机碳的比率则相反.两种林分土壤中水溶性有机碳、易氧化碳、轻组有机质与总有机碳含量均呈显著或极显著相关,其中,抚育林分的易氧化碳和轻组有机质与总有机碳的相关系数大于对照,而水溶性有机碳与总有机碳则相反.两种林分中,易氧化碳、轻组有机质、总有机碳与土壤养分的相关性均达到显著或极显著水平,而抚育林分土壤水溶性有机碳与水解氮、速效磷、交换性钙和交换性镁的相关性不显著.  相似文献   

15.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

16.
In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.  相似文献   

17.
The effect of nitrogen (N) additions on the dynamics of carbon monoxide consumption in temperate forest soils is poorly understood. We measured soil CO profiles, potential rates of CO consumption and uptake kinetics in temperate hardwood and pine control plots and plots amended with 50 and 150 kg N ha-1 year-1 for more than 15 years. Soil profiles of CO concentrations were above atmospheric levels in the high-N plots of both stands, suggesting that in these forest soils the balance between consumption and production may be shifted so that either production is increased or consumption decreased. Highest rates of CO consumption were measured in the organic horizon and decreased with soil depth. In the N-amended plots, CO consumption increased in all but one soil depth of the hardwood stand, but decreased in all soil depths of the pine stand. CO enzyme affinities increased with soil depth in the control plots. However, enzyme affinities in the most active soil depths (organic and 0-5 cm mineral) decreased in response to low levels of N in both stands. In the high-N plots, affinities dramatically-increased in the hardwood stand, but decreased in the organic horizon and increased slightly in the 0-5 cm mineral soil in the pine stand. These findings indicate that long-term N addition either by fertilization or deposition may alter the size, composition and/or physiology of the community of CO consumers so that their ability to act as a sink for atmospheric CO has changed. This change could have a substantial effect on the lifetime of greenhouse gases such as CH4 and therefore the future of Earth's climate.  相似文献   

18.
Natural 15N abundance values were measured in needles, twigs, wood, soil, bulk precipitation, throughfall and soil water in a Douglas fir (Pseudotsuga menziesii (Mirb.) and a Scots pine (Pinus sylvestris L.) stand receiving high loads of nitrogen in throughfall (>50 kg N ha−1 year−1). In the Douglas fir stand δ15N values of the vegetation ranged between −5.7 and −4.2‰ with little variation between different compartments. The vegetation of the Scots pine stand was less depleted in 15N and varied from −3.3 to −1.2‰δ15N. At both sites δ15N values increased with soil depth, from −5.7‰ and −1.2‰ in the organic layer to +4.1‰ and +4.7‰ at 70 cm soil depth in the Douglas fir and Scots pine stand, respectively. The δ15N values of inorganic nitrogen in bulk precipitation showed a seasonal variation with a mean in NH4 +-N of −0.6‰ at the Douglas fir stand and +10.8‰ at the Scots pine stand. In soil water below the organic layer NH4 +-N was enriched and NO3 -N depleted in 15N, which was interpreted as being caused by isotope fractionation accompanying high nitrification rates in the organic layers. Mean δ15N values of NH4 + and NO3 were very similar in the drainage water at 90 cm soil depth at both sites (−7.1 to −3.8‰). A dynamic N cycling model was used to test the sensitivity of the natural abundance values for the amount of N deposition, the 15N ratio of atmospheric N deposited and for the intrinsic isotope discrimination factors associated with N transformation processes. Simulated δ15N values for the N saturated ecosystems appeared particularly sensitive to the 15N ratio of atmospheric N inputs and discrimination factors during nitrification and mineralization. The N-saturated coniferous forest ecosystems studied were not characterized by elevated natural 15N abundance values. The results indicated that the natural 15N abundance values can only be used as indicators for the stage of nitrogen saturation of an ecosystem if the δ15N values of the deposited N and isotope fractionation factors are taken into consideration. Combining dynamic isotope models and natural 15N abundance values seems a promising technique for interpreting natural 15N abundance values found in these forest ecosystems. Received: 5 May 1996 / Accepted: 10 April 1997  相似文献   

19.
根据凉水自然保护区28块典型阔叶红松林样地的5个林分空间结构参数和18个影响因子数据,采用典范对应分析(CCA)方法,对凉水自然保护区阔叶红松林林分空间结构与影响因子间关系进行分析。研究结果表明:(1)研究区域阔叶红松林整体具有较好的林分空间结构,其水平分布格局主要表现为随机分布,树木生长整体处于中庸状态,林木的整体混交程度较高;(2)林分空间结构的CCA排序较好的揭示了该区林分空间结构与影响因子的关系;CCA第一排序轴反映了林龄、坡度、阔叶比和坡向的变化,第二排序轴反映了坡向、土壤有机质和平均胸径的变化,上述6因子的组合是决定林分空间结构特征的主要影响因子;(3)影响林分空间结构的变量中,地形、土壤和林分因子共解释了林分空间结构变化的59.20%,其中纯地形因子占30.68%,纯林分因子占19.01%,纯土壤因子占8.21%,未能解释部分为40.80%。  相似文献   

20.
Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号