首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Land-use and land-cover strongly influence soil properties such as the amount of soil organic carbon (SOC), aggregate structure and SOC turnover processes. We studied the effects of a vegetation shift from forest to grassland 90 years ago in soils derived from andesite material on Barro Colorado Island (BCI), Panama. We quantified the amount of carbon (C) and nitrogen (N) and determined the turnover of C in bulk soil, water stable aggregates (WSA) of different size classes (<53 μm, 53–250 μm, 250–2000 μm and 2000–8000 μm) and density fractions (free light fraction, intra-aggregate particulate organic matter and mineral associated soil organic C). Total SOC stocks (0–50 cm) under forest (84 Mg C ha−1) and grassland (64 Mg C ha−1) did not differ significantly. Our results revealed that vegetation type did not have an effect on aggregate structure and stability. The investigated soils at BCI did not show higher C and N concentrations in larger aggregates, indicating that organic material is not the major binding agent in these soils to form aggregates. Based on δ13C values and treating bulk soil as a single, homogenous C pool we estimated a mean residence time (MRT) of 69 years for the surface layer (0–5 cm). The MRT varied among the different SOC fractions and among depth. In 0–5 cm, MRT of intra-aggregate particulate organic matter (iPOM) was 29 years; whereas mineral associated soil organic C (mSOC) had a MRT of 124 years. These soils have substantial resilience to C and N losses because the >90% of C and N is associated with mSOC, which has a comparatively long MRT.  相似文献   

2.
Major sulfur pools are quantified in soils and aboveground biomass of a coniferous boreal forest. Total ecosystem S averages 1395 kg·ha−1 of which 98% is found in the soil, with 89% being in the mineral horizons. Organic S dominates in soil, tree parts (trunks, branches + foliage, roots) and litterfall, ranging from 77 to 99% of total S concentration. Carbon-bonded S, ester sulfate and SO4-S in soil profiles range respectively from 51–68%, 29–37% and 1–14% of total S concentrations and account respectively for 57, 33 and 10% of total S on an areal basis. Adsorbed SO4 accounts for 82% of total SO4, and can be predicted from Al bound to organic matter, amorphous Al and pH (r2 = 0.81). There is a strong relationship between % carbon and carbon-bonded S in 4 of the 5 soil horizons studied which represent over 95% of the total soil organic matter, whereas ester sulfate is related to % carbon in 3 soil horizons representing only 37% of the soil organic matter. An analysis of atmospheric S loading and S data for 10 forested sites in Europe and North America suggests that the size of the organic S pool in forested systems is independent of atmospheric loading.  相似文献   

3.
Attempts were made to quantify the carbon and nitrogen pools in a monospecific and pioneer mangrove stand of Kandelia obovata Sheue, Liu & Yong, Okinawa Island, Japan. The leaf C and N concentrations on a leaf area basis decreased with increasing PPFD (Photosysthetic Photon Flux Density). The total C and N stocks in foliage were estimated as 3.55 Mg ha–1 and 0.105 Mg ha–1, respectively. The bark (45.6–48.6% for C and 0.564–0.842% for N) contained significantly higher amount of C (P < 0.05) and N (P < 0.01) than wood (46.2–47.8% for C and 0.347–0.914% N). The total C stock of stem was 23.2 Mg ha–1 in wood and 8.33 Mg ha–1 in bark, and the total N stock was 0.222 Mg ha–1 in wood and 0.116 Mg ha–1 in bark. The root wood (37.1–45.0%) contained significantly higher amount of C than root bark (35.4–40.7%) (P < 0.01). The total C stock of root was 14.2 Mg ha–1 in wood and 12.6 Mg ha–1 in bark, and the total N stock of root was 0.157 Mg ha–1 in wood and 0.155 Mg ha–1 in bark. The soil organic C and total N stocks within 1 m soil depth were estimated as 57.3 Mg ha–1 and 2.73 Mg ha–1, respectively. The C pool in aboveground biomass (35.1 Mg ha–1) was 1.3 times as large as that in belowground biomass (26.9 Mg ha–1). However, the soil organic C pool (57.3 Mg ha–1) was similar to the total C pool (62.0 Mg ha–1) of vegetation, indicating that the mangrove stored a large part of production in the soil. About 50% of the C was in the soil. The N pool in aboveground biomass (0.442 Mg ha–1) was 1.4 times as large as that in belowground biomass (0.312 Mg ha–1). The soil N stock was 3.3 times as large as the biomass N stock (0.754 Mg ha–1).  相似文献   

4.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

5.
Conversion to cattle pasture is the most common fate of the ≈426,000 km2 of tropical forest that has been deforested in the Brazilian Amazon. Yet little is known about the biomass, C, nutrient pools, or their responses to the frequent fires occurring in these pastures. We sampled biomass, nutrient pools and their losses or transformation during fire in three Amazonian cattle pastures with typical, but different, land-use histories. Total aboveground biomass (TAGB) ranged from to 53 to 119 Mg ha−1. Residual wood debris from the forests that formally occupied the sites composed the majority of TAGB (47–87%). Biomass of fine fuels, principally pasture grasses, was ≈16–29 Mg ha−1. Grasses contained as much as 52% of the aboveground K pool and the grass and litter components combined composed as much as 88% of the aboveground P pool. Fires consumed 21–84% of the TAGB. Losses of C to the atmosphere ranged from 11 to 21 Mg ha−1 and N losses ranged from 205 to 261 kg ha−1. Losses of S, P, Ca, and K were <33 kg ha−1. There were no changes in surface soil (0–10 cm) nutrient concentration in pastures compared to adjacent primary forests. Fires occur frequently in cattle pastures (i.e., about every 2 years) and pastures are now likely the most common type of land burned in Amazonia. The first 6 years of a pastures existence would likely include the primary forest slash fire and three pasture fires. Based upon our results, the cumulative losses of N from these fires would be 1935 kg ha−1 (equivalent to 94% of the aboveground pool of primary forest). Postfire aboveground C pools in old pastures are as low as 3% of those in adjacent primary forest. The initial primary forest slash fire and the repeated fires occurring in the pastures result in the majority of aboveground C and nutrient pools being released via combustion processes rather than decomposition processes. Received: 6 January 1997 / Accepted: 2 September 1997  相似文献   

6.
Microbiological and physico-chemical characteristics of tropical forest, grassland and cropfield soils from India were investigated. The study revealed that the conversion of natural forest led to a reduction of soil organic C (26–36%), total N (26–35%), total P (33–44%), microfungal biomass (44–66%) and total microbial biomass C, N and P (25–60%) over a period of 30–50 years. Comparative analysis of microbial activity in terms of basal soil respiration revealed maximum activity in the forest and minimum in the cropfield soil. Analysis of microbial metabolic respiratory activity (qCO2) indicated relatively greater respiratory loss of CO2-C per unit microbial biomass in cropfield and grassland than in forest soil. Considering the importance of the microbial component in soil, we conclude that the conversion of the tropical forest to different land uses leads to the loss of biological stability of the soil.  相似文献   

7.
Paoli GD  Curran LM  Slik JW 《Oecologia》2008,155(2):287-299
Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

9.
Dissolved organic nitrogen (DON) has recently been recognized as an important component of terrestrial N cycling, especially under N-limited conditions; however, the effect of increased atmospheric N deposition on DON production and loss from forest soils remains controversial. Here we report DON and dissolved organic carbon (DOC) losses from forest soils receiving very high long-term ambient atmospheric N deposition with or without additional experimental N inputs, to investigate DON biogeochemistry under N-saturated conditions. We studied an old-growth forest, a young pine forest, and a young mixed pine/broadleaf forest in subtropical southern China. All three forests have previously been shown to have high nitrate (NO3) leaching losses, with the highest loss found in the old-growth forest. We hypothesized that DON leaching loss would be forest specific and that the strongest response to experimental N input would be in the N-saturated old-growth forest. Our results showed that under ambient deposition (35–50 kg N ha−1 y−1 as throughfall input), DON leaching below the major rooting zone in all three forests was high (6.5–16.9 kg N ha−1 y−1). DON leaching increased 35–162% following 2.5 years of experimental input of 50–150 kg N ha−1 y−1. The fertilizer-driven increase of DON leaching comprised 4–17% of the added N. A concurrent increase in DOC loss was observed only in the pine forest, even though DOC:DON ratios declined in all three forests. Our data showed that DON accounted for 23–38% of total dissolved N in leaching, highlighting that DON could be a significant pathway of N loss from forests moving toward N saturation. The most pronounced N treatment effect on DON fluxes was not found in the old-growth forest that had the highest DON loss under ambient conditions. DON leaching was highly correlated with NO3 leaching in all three forests. We hypothesize that abiotic incorporation of excess NO3 (through chemically reactive NO2) into soil organic matter and the consequent production of N-enriched dissolved organic matter is a major mechanism for the consistent and large DON loss in the N-saturated subtropical forests of southern China. Dr. YT Fang performed research, analyzed data, and wrote the paper; Prof. WX Zhu participated in the initial experimental design, analyzed data, and took part in writing the paper; Prof. P Gundersen conceived the study and took part in writing; Prof. JM Mo and Prof. GY Zhou conceived study; Prof. M Yoh analyzed part of the data and contributed to the development of DON model.  相似文献   

10.
20th Century Carbon Budget of Forest Soils in the Alps   总被引:2,自引:1,他引:1  
Dendrochronological studies and forest inventory surveys have reported increased growth and biospheric carbon (C) sequestration for European forests in the recent past. The potential of concomitant changes in forest soil C stocks are not accounted for in the IPCC guidelines for national greenhouse gas inventories. We developed a model-based approach to address this problem and assess the role of soils in forest C balance in the European Alps. The decomposition model FORCLIM-D was driven by long-term (that is, 1900–1985 AD) litter input scenarios constructed from forest inventory data, region-specific dendrochronological basal area indices, and time series of anthropogenic litter removal. The effect of spatial climate variability on organic matter decomposition across the case study region (Switzerland) was explicitly accounted for by constant long-term annual means of actual evapotranspiration and temperature. Uncertainties in forest development, litter removal, fine root litter input, and dynamics of forest soil C were studied by an explorative factorial sensitivity analysis. We found that forest soils contribute substantially to the biospheric C sequestration for Switzerland: Our “best estimate” yielded an increase of 0.35 Mt C/y or 0.33 t C/(ha y) in forest soils for 1985, that is, 27% of the C sequestered by forest trees (BUWAL 1994). Uncertainties regarding C accumulation in forest soils were substantial (0.11–0.58 Mt C/y) but could be reduced by estimating forest soil C stocks in the future. Whereas soils can be important for the C balance in naturally regrowing forests, their C sequestration is negligible (less than 5%) relative to anthropogenic CO2 emissions in Western Europe at present. Received 25 August 1998; accepted 17 March 1999.  相似文献   

11.
Soil aggregates can provide an effective protection of organic matter against microbial decomposition as reported by several macroaggregate disruption studies. However, research on the role of aggregation for carbon mineralization was mainly focused on arable soils. In the present study we aim to clarify the impact of aggregation on organic matter protection by measuring carbon mineralization in terms of microbial respiration rates of intact macroaggregates (2–4 and 4–8 mm) and corresponding crushed aggregates from seven topsoil horizons from both arable and forest sites. For two arable and one forest soil we found a significantly (P < 0.001) lower carbon mineralization from intact aggregates as compared to the corresponding crushed material. The portion of aggregate protected carbon reached up to 30% for a grassland soil. For the other arable and forest soils no significant effect of aggregation was found. Similarly, no clear trend could be found for the protective capacity of different size fractions. We conclude that protection by aggregation is effective primarily for soils with a large pool of labile organic matter regardless of their usage as arable land or forest.  相似文献   

12.
Three soils which had been amended for several years with pig slurry, cattle slurry, and sewage sludge were dry-sieved to obtain microaggregates in the size range of 250–125, 125–50, and <50 μm. With amendments, aggregate size distribution of whole soils was shifted to larger sizes, especially for the most fragile soil, whereas percent content of microaggregates decreased except for the lower size aggregates of the fragile soil. Particle size distribution of microaggregates revealed an increase in percent sand and a reduction of percent silt and clay in the <50 μg size fraction for all soils. These results showed the aggregation effect induced by the organic waste additions. Aggregate stability of microaggregates revealed significant correlation with humic substances content (humic acids alone and humic plus fulvic acids) and non significant with total organic matter substantiating the belief that humic substances are the predominant binding agents in this aggregation range. Molecular weight distribution of humic acids extracted from microaggregates of unamended soils demonstrated that the lower the soil aggregate size distribution, the larger the contribution of the high molecular weight fraction. All microaggregates from amended soils showed a progressive increase of the high molecular weight humic acids with decreasing size, reaching a maximum in the <50 μm fraction. In this aggregate size a parallel enhancement of the aggregate stability was also evident. It is concluded that a close relationship exists between aggregate stability and high molecular weight humic substances. Additions to soils of organic material containing high molecular weight constituents would represent a useful management practice to improve aggregate stability.  相似文献   

13.
Subtropical China has more than 60% of the total plantation area in China and over 70% of these subtropical plantations are composed of pure coniferous species. In view of low ecosystem services and ecological instability of pure coniferous plantations, indigenous broadleaf plantations are being advocated as a prospective silvicultural management for substituting in place of large coniferous plantations in subtropical China. However, little information is known about the effects of tree species conversion on stock and stability of soil organic carbon (SOC). The four adjacent monospecific plantations were selected to examine the effects of tree species on the stock and chemical composition of SOC using elemental analysis and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM), and Mytilaria laosensis (ML). We found that SOC stock differed significantly among the four plantations in the upper (0–10 cm) layer, but not in the underneath (10–30 cm) layer. SOC stocks in the upper (0–10 cm) layer were 11, 19, and 18% higher in the CH, MM, and ML plantations than in the PM plantation. The differences in SOC stock among the four plantations were largely attributed to fine root rather than aboveground litterfall input. However, the soils in the broadleaf plantations contained more decomposable C proportion, indicated by lower percentage of alkyl C, higher percentage of O-alkyl C and lower alkyl C/O-alkyl C ratio compared to those in the PM plantation. Our findings highlight that future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on the chemical composition in addition to the quantity of SOC stock.  相似文献   

14.
The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic information system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8 ± 0.5 Pg C, or 8% of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestration to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maximizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest.  相似文献   

15.
Soluble Organic Nitrogen Pools in Forest soils of Subtropical Australia   总被引:15,自引:0,他引:15  
Soil soluble organic N (SON) plays an important role in N biogeochemical cycling. In this study, 22 surface forest soils (0–10 cm) were collected from southeast Queensland, Australia, to investigate the size of SON pools extracted by water and salt solutions. Approximately 5–45 mg SON kg−1, 2–42 mg SON kg−1 and 1–24 SON mg kg−1 were extracted by 2 M KCl, 0.5 M K2SO4 and water, on average, corresponding to about 21.1, 13.5 and 7.0 kg SON ha−1 at the 0–10 cm forest soils, respectively. These SON pools, on average, accounted for 39% (KCl extracts), 42% (K2SO4 extracts) and 43% (water extracts) of total soluble N (TSN), and 2.3% (KCl extracts), 1.3% (K2SO4 extracts) and 0.7% (water extracts) of soil total N, respectively. Large variation in SON pools observed across the sites in the present study may be attributed to a combination of factors including soil types, tree species, management practices and environmental conditions. Significant relationships were observed among the SON pools extracted by water, KCl and K2SO4 and microbial biomass N (MBN). In general, KCl and K2SO4 extracted more SON than water from the forest soils, while KCl extracted more SON than K2SO4. The SON and soluble organic C (SOC) in KCl, K2SO4 and water extracts were all positively related to soil organic C, total N and clay contents. This indicates that clay and soil organic matter play a key role in the retention of SON in soil.  相似文献   

16.
We analyzed the distributional pattern of species and environmental gradients across inland water–land palm ecotones (morichals) of the Orinoco lowlands to increase comprehension of the nature of ecotone heterogeneity. A total of 91 species (53 genera and 45 families) with aboveground phytomass > 0.1 g dry mass were recorded. Detrented canonical correspondence analysis (DCCA) indicated that vegetation phytomass was related strongly to soil properties, including gradients of silt (14.5–4.7%), exchangeable Al (1.05–3.10 cmole kg−1), K (0.03–0.30 cmole kg−1), Na (0.01–0.08 cmole kg−1), Mg (0.03–0.54 cmole kg−1) concentrations, pH (3.7–5.0 units), and soil organic matter. Cluster analysis allowed the definition of four types of ecotones on the basis of hydrogeomorphic processes. The first major group (1) encompassing the sites from Venezuelan lowlands (i.e., 3V, 4V, 5V, 6V, and 7V) was related to less acidic soils with high organic matter content. The second group (II) from Eastern Colombian llanos (i.e., sites 8C, 9C, 11C, 12C, 13C, 14C, and 15C) was located in acidic soils (3.9–4.5 units) with high Mg concentration. The third group (III) (i.e., sites IV and 10C) was located in soils with high Na content, whereas the fourth group (IV) (i.e., site 2V) was characterized by species growing in soils with low exchangeable aluminum. The results evidenced the interactive role of valley constraint, landforms, hydrological regime, and soil feature in structuring the plant community. Biogeographic and floristic considerations were also taken into account to explain differences in species composition.  相似文献   

17.
Soils and aboveground production in five types of upland forest in the Florida Keys were examined. Throughout the habitat gradient represented by these forest types, the soils were predominantly shallow and organic, forming in place directly on the limestone bedrock. However, the well-drained soils in the most productive broadleaved forests were deep enough to qualify as Histosols (Folists). Soils decreased in electrical conductivity and increased in nutrient content with increasing aboveground production. At 3–12 Mg ha–1 yr–1, production was within the range reported for dry tropical forests. Measured rates of decomposition were moderate or fast, and estimates of the organic C turnover of several soils based on their bomb radiocarbon signature were 100 years or less. In the face of these rapid turnover rates, we attribute the development of organic soils to the absence of mineral residues from weathering of the underlying limestone bedrock. Fast turnover of organic matter, and rapid and efficient cycling of nutrients are necessary to sustain the high production rates obtained on these shallow organic soils.  相似文献   

18.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

19.
Land use and organic carbon content of some subtropical soils   总被引:29,自引:0,他引:29  
Summary The assumption that the organic matter content of tropical forest soils is oxidized to atmospheric carbon dioxide when these soils are converted to agricultural use was tested using results of soil surveys in Puerto Rico (1940's, 1960's, and 1980's). Results showed that under intensive agricultural use, soil carbon in the top 18 cm of soil was about 30–37 Mg/ha, regardless of climatic conditions. Reduced intensity of agricultural use resulted in an increase of soil carbon in the order of 0.3–0.5 Mg.ha−1. yr−1 over a 40-yr period. Rates of soil carbon accumulation were inversely related to the sand content of soils. The relation between rates of soil carbon accumulation and climate or soil texture were better defined at higher soil carbon content. Soils under pasture accumulated soil carbon and often contained similar or greater amounts than adjacent mature forest soils (60–150 Mg/ha in the top 25 or 50 cm). Soils in moist climates exhibited greater variations in soil carbon content with changes in land use (both in terms of loss and recovery) than did soils in dry climates. However, in all life zones studied, the recovery of soil carbon after abandonment of agriculture was faster than generally assumed. Low carbon-to-nitrogen ratios suggested that intensively used soils may be stable in their nutrient retention capacity. The observed resiliency of these soils suggested that their role as atmospheric carbon sources has been overestimated, while their potential role as atmospheric carbon sinks has been underestimated.  相似文献   

20.
Use of copper-based fungicides has led to an increase in the total Cu content in agriculture soils. The focus of this study was to determine fractionation of Cu and to investigate the structure and the diversity of cultivable bacterial communities in two vineyards (one 25 years old and one 2 years old), one olive orchard and two forest soils. All soils developed on an Oligocene sandstone. The concentration of total Cu in the old vineyard (176.6 mg kg−1) and olive orchard (145.5–296.7 mg kg−1) was from 5 to 10 times higher than in forest soils. The major amount of Cu was found bound to the humic substances in cultivated soils, whereas in forest soils Cu was found in the residual mineral fraction. A relationship was found between the number of cultivable Cu-tolerant bacteria and total Cu content in soil. In the cultivated soils, Cu had a toxicological effect on bacterial community, and thereby Cu-levels > to 145 mg kg−1 could be a risk to soil biota. Microbial communities were analysed by community level physiological profiling (CLPP), using the Biolog system, and by the amplified ribosomal DNA restriction analysis (ARDRA) approach. Only when cell suspensions containing 104 colony-forming units (c.f.u.) were inoculated in each well of Biolog EcoPlates it was possible to discriminate microbial communities from different soil samples. As expected, 16S ARDRA showed that cultivated soils had a lower microbial diversity in respect to forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号