首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Initial soil formation under primary stands of Scots pine (planted) and European black poplar (natural) on calcareous dune sands was studied, paying particular attention to the humus forms and their spatial variability. The stands studied are both about 80 years old and are situated, at close distance, in the coastal dunes near Wassenaar (the Netherlands).Under Scots pine, soils with a mor-type humus form were observed, exhibiting slight podzolisation. Soil variability is rather slight and soil development is comparable to that under primary Scots pine stands on non-calcareous inland drift sands. Under poplar, mull-type humus forms occur which tend towards moder and exhibit a markedly stronger litter decomposition and bioturbation. In contrast to the soils under pine, soil variability is considerable. Results from chemical analyses of two representative soil profiles are in conformance with these trends.It is concluded that the observed trends in soil formation are in line with those described in the literature, and that a period of 80 years is sufficient for a strong vegetation related divergence in soil properties. Soil variability within the stands probably results from redistribution of litter by wind and/or gravity and will be rather site-dependent.  相似文献   

2.
Curt  Thomas  Prévosto  Bernard 《Plant Ecology》2003,167(2):269-282
The natural establishment of shade-tolerant forest species such as beech (Fagus sylvatica L.) occurs in naturally regenerated Scots pine (Pinus sylvestris L.) woodlands that develop on former pastures and cultivated lands. To examine possible effects of underground competition in beech establishment, we studied the root biomass and the rooting profile of 53 mixed Scots pine-natural beech woodlands in French mid-elevation volcanic areas. Stands were arranged along a maturation gradient. Roots were sampled using the root-auger technique (0 to 75 cm depth every 15 cm). In addition, 23 young beeches were uprooted to study the entire root system. Total beech fine-root biomass was closely correlated with most beech aerial characteristics, (e.g., height, diameter and girth), and correlated moderately with tree age. However, it correlated poorly with basic competition indices such as stand density and basal area. Conversely, competition indices including vertical dimensions of competing trees were correlated with the underground biomass, probably as a result of redundancy with beech height. The rooting profile (fine roots, < 5 mm) of beech and pine were quite similar, and did not change significantly along the stand maturation gradient. Beech has a heart-shaped root system while pine is more plate-like and dimorphic. Beech fine-root biomass progressively surpassed pine biomass throughout the soil layers, thus confirming that it is dynamic and competitive in mature mixed stands. The coexistence of the root systems of beech and pine in the same soil layers presumably results in strong underground competition.  相似文献   

3.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

4.
The present study aimed at exploring the long-term impact of pure and mixed beech Fagus sylvatica and oak Quercus robur stands on the forest floor by documenting changes in the herb species' behaviour and in humus index across a 200-yr chronosequence of forest stands. The research was conducted in central Belgium, in a 4383 ha beech-dominated forest. Analyses were carried out in stands which are replicated, of the same age, managed in the same way, and growing on the same soil type with the same land-use history. The results of this study indicate that stand aging is an important determinant of herb species occurrence in the studied area. Most of the species studied show a different response to stand age in pure compared to mixed stands. Our results clearly show a decrease of the humus quality with age in pure stands (beech as well as oak). On the other hand, we found that mixing beech and oak maintained or improved the humus status along the chronosequence according to the proportion of each tree. So the addition of some oak to the beech made it possible to keep a constant quality of the humus. We found that, even if the understory tree species is very scarce, it may be sufficient to maintain the humus status on the long term. In the present study, a cover of 1% oak in a beech stand was sufficient to show an effect of the minor species on these soils. This pattern contrasts with the widespread idea that substantial effects of the minor tree species on soils might not develop if the ratio of major/minor species is low.  相似文献   

5.

Background and aims

Replacement of beech by spruce is associated with changes in soil acidity, soil structure and humus form, which are commonly ascribed to the recalcitrance of spruce needles. It is of practical relevance to know how much beech must be admixed to pure spruce stands in order to increase litter decomposition and associated nutrient cycling. We addressed the impact of tree species mixture within forest stands and within litter on mass loss and nutritional release from litter.

Methods

Litter decomposition was measured in three adjacent stands of pure spruce (Picea abies), mixed beech-spruce and pure beech (Fagus sylvatica) on three nutrient-rich sites and three nutrient-poor sites over a three-year period using the litterbag method (single species and mixed species bags).

Results

Mass loss of beech litter was not higher than mass loss of spruce litter. Mass loss and nutrient release were not affected by litter mixing. Litter decay indicated non-additive patterns, since similar remaining masses under pure beech (47%) and mixed beech-spruce (48%) were significantly lower than under pure spruce stands (67%). Release of the main components of the organic substance (Corg, Ntot, P, S, lignin) and associated K were related to mass loss, while release of other nutrients was not related to mass loss.

Conclusions

In contradiction to the widely held assumption of slow decomposition of spruce needles, we conclude that accumulation of litter in spruce stands is not caused by recalcitrance of spruce needles to decay; rather adverse environmental conditions in spruce stands retard decomposition. Mixed beech-spruce stands appear to be as effective as pure beech stands in counteracting these adverse conditions.  相似文献   

6.
This study investigated the belowground development and strategy of late-successional European beech (Fagus sylvatica L.) in ageing natural Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth.) woodlands in a French volcanic mid-elevation area. For this purpose root biomass, root profile and fine-root architecture of competitor trees were examined in 53 mixed pine–beech and 42 birch–beech woodlands along a stand maturation gradient, using the root auger technique (0–75-cm). The total beech fine-root biomass highly correlated with aerial dimensions such as stem height and girth, whereas it moderately correlated with its age, thus indicating the effects of competition. Basic stand biometric data such as stand density and basal area had no significant effect on beech root biomass. Conversely, competition indices taking into account the vertical dimensions of competitor trees were efficient, probably due to redundancy with beech height. At similar age and height, beeches under birch had a greater belowground development than beeches under pine. Each species exhibited specific rooting pattern and plasticity of fine-root architecture along the gradients of stand maturation and competition. Beech had a heart-shaped rooting habit in both mixings, which strongly increased along stand maturation. Its fine-root system adopted a foraging strategy to respond to increasing stand competition. The Scots pine fine-root system was plate-like and showed a low morphological plasticity, thus presumably a conservative strategy. Silver birch exhibited a high biomass and a foraging capacity in the topsoil but a loose root system in the subsoil. The coexistence of pine and beech roots in the upper soil presumably leads to a high belowground competition. Beech root system becomes predominant throughout the soil profile and it adopts an efficient foraging strategy, but at the expense of its belowground development. Conversely, the niche partitioning strategy between beech and birch may explain why beech develops strongly belowground in spite of the fact that birch has a dense rooting and a competitive fine-root architecture. As a consequence, beech mid-term regeneration and development may be facilitated under birch as compared with pine.  相似文献   

7.
Water-plant relations play a key role in the water cycling in terrestrial ecosystems. Consequently, changes in tree species composition may have distinct effects on the water retention capacity as well as on the pattern of streamflow generation. Such changes may result from modified interception properties and transpiration related to differences in canopy properties and root distribution. In order to evaluate the potential hydrological effects of the current silvicultural conversion from monocultural conifer stands into mixed or pure deciduous stands the hydrological model BROOK90 was applied to two forested upland catchments in Germany. The Rotherdbach catchment (9.4 ha, 93 yr-old Norway spruce) is situated in the Eastern Ore Mountains. The Schluchsee catchment (11 ha, 55-yr-old Norway spruce) is located in the higher altitudes of the Black Forest. The calibrated model is capable to describe rather well the temporal variation of streamflow but also the portions of the individual flow components. Data for a beech scenario were adapted for each site using a standard parameter set for deciduous trees provided by BROOK90. The annual discharge in the fictional beech stand at Rotherdbach is 30 to 50% higher compared to spruce with an increase of soil moisture and especially the slow streamflow components. This mainly results from low interception rates during winter time. In contrast, the spruce stand has a permanently higher interception rate. Effects of tree species conversion are moderate at Schluchsee. The annual discharge of a fictional beech stand at Schluchsee is 7 to 14% higher compared to spruce. There in contrast to Rotherdbach, effects of tree species conversion on soil moisture dynamics are small since vertical percolation in the highly permeable soil dominates and precipitation is abundant. Practical forestry will favorably establish mixed beech–spruce rather than pure beech stands. However, it is critical to simulate mixed stands with BROOK90. Therefore, a simple summation of model results from spruce and beech according to their respective area in a fictional mixed stand can only be a first approximation. Advanced hydrological simulation of mixed stand conditions should regard interactions of tree species and spatial parameter distribution. However, this is not yet feasible due to a distinct lack of information. As a consequence, there is a strong need to collect relevant hydrological and ecophysiological data in mixed stands in the future.  相似文献   

8.
Processes governing tree interspecific interactions, such as facilitation and competition, may vary in strength over time. This study tried to unveil them by performing dendrometrical analyses on black spruce Picea mariana, trembling aspen Populus tremuloides and jack pine Pinus banksiana trees from pure and mixed mature boreal forest stands in the Clay Belt of northwestern Quebec and on the tills of northwestern Ontario. We cored 1430 trees and cut 120 for stem analysis across all stand composition types, tree species and study regions. Aspen annual growth rate was initially higher when mixed with conifers, but then progressively decreased over time compared to pure aspen stands, while jack pine growth rate did not differ with black spruce presence throughout all stages of stand development. When mixed with aspen, black spruce showed a contrary response to aspen, i.e. an initial loss in growth but a positive gain later. On the richer clay soil of the Quebec Clay Belt region, however, both aspen and spruce responses in mixed stands reversed between 37 and 54 years. Overall, our results demonstrate that interspecific interactions were present and tended to change with stand development and among species. Our results also suggest that the nature of interspecific interactions may differ with soil nutrient availability.  相似文献   

9.
J. Baar 《Mycorrhiza》1997,7(2):89-94
 The effect on ectomycorrhizal root growth in a nitrogen-enriched planted stand of Scots pine (Pinus sylvestris L.) on podzolic sandy soil to manipulation of litter and humus layers (removal, doubling and control treatments) was examined, and compared to ectomycorrhizal root growth in an untreated naturally established Scots pine stand on nutrient-poor non-podzolic sandy soil. Half a year after manipulation of litter and humus layers in the planted stand, ingrowth-cores to a depth of 60 cm were installed in both stands. Scots pine roots were sampled four times during two growing seasons. Ectomycorrhizal roots were found at all sampled soil depths to 60 cm in all plots. Root growth and ectomycorrhizal development were greater in the naturally established stand than in all plots in the planted stand. Numbers of ectomycorrhizal root tips in the litter and humus removal plots were generally higher than in the control plots in the planted stand until May 1992. Doubling litter and humus did not significantly affect root length or the numbers of ectomycorrhizal root tips. The N dissolved , NH4 + and NO3 concentrations and the organic matter content in the upper 5 cm of the mineral soil in the planted stand on podzolic sandy soil were generally higher and the pH significantly lower than in the naturally established stand on non-podzolic sandy soil. Root growth and ectomycorrhizal development in the secondary stand may have been negatively affected by the chemical composition of the podzolic sandy soil. Accepted: 19 March 1997  相似文献   

10.
Ten pairs of secondary pure spruce (Picea abies) and adjacent mixed spruce-beech (Fagus sylvatica) stands on comparable sites were selected on two different bedrocks for soil formation (Flysch: nutrient rich and high soil pH; Molasse: poor nutrient supply and acidic) to study how an admixture of beech to spruce stands affects nutrient cycling and consequently soil chemistry. Soil analyses indicated accumulation of Ca under the mixed stands while the top soil under pure spruce was acidified. It was hypothesized that changes of soil chemical properties due to species composition over the last six decades are reflected in the stem wood of spruce. Three healthy dominant spruce trees per plot were selected for coring. Cores were crossdated and half-decadal samples were analyzed for Ca, Mg, Mn and Al. Calcium and Mg concentrations in stem wood of spruce were significantly higher for the pure spruce than for the mixed stands in spite of lower Ca and Mg stores in the soil. We assume that acidification caused by pure spruce mobilized these cations temporarily, increasing soil solution contents and consequently stem wood concentrations. It was possible to reconstruct soil pH from the element ratios Ca/Al (pure stands) and Ca/Mg (mixed stands), since these ratios in the stem wood of the last half-decade did correlate with soil pH for selected soil depths. Reconstructed soil pH showed a decline over the last 60 years under both species compositions due to accumulation of base cations in the increasing biomass. Comparisons of reconstructed soil pH in 0–5 and 10–20 cm soil depth indicated more pronounced top soil acidification (lower soil pH in 0–5 cm) by spruce on the nutrient rich soil (Flysch) than on the acidic soil (Molasse). However, admixture of beech caused higher pH values in 0–5 cm than in 10–20 cm soil depth on Flysch due to the observed Ca-pump effect of beech (uptake of Ca from deeper soil horizons).  相似文献   

11.
以松材线虫入侵马尾松林后经过不同伐倒干扰强度经营形成的不同群落类型作为研究对象,对9个群落类型的物种多样性进行了研究.结果表明,乔木层物种多样性指数大小排列顺序为: 马尾松纯林受害皆伐后形成的阔叶林(富阳)>轻度受害的马尾松 木荷混交林(富阳)>对照>轻度受害的马尾松 纯林(富阳)>马尾松 栓皮栎混交林受害择伐后形成的栓皮栎林(舟山)>马尾松纯林受害皆伐后形成的马尾松幼龄林(富阳)>马尾松纯林受害择伐后形成的枫香林(舟山)>受害的黑松 马尾松混交林(舟山)>受害的马尾松纯林(舟山).灌木层舟山马尾松纯林的3种多样性指数均最低,其余各地相差不大.草本层马尾松幼树纯林、栓皮栎林和枫香林的3个指数较高.不同地理位置和不同受害程度的马尾松林植物多样性差异显著;不同干扰程度、不同恢复方式下马尾松林内的植物多样性差异也显著.建立了伐倒干扰强度指数,发现物种多样性指数随伐倒干扰强度指数的变化规律符合“中间高度膨胀”理论.协方差分析结果表明,所建的指数能有效地反映松材线虫入侵及病木伐除后马尾松林植物多样性的变化.  相似文献   

12.
Relationships between tree parameters above ground and the biomass of the coarse root system were examined in six mixed spruce-beech stands in the Solling Mountain region in northwest Germany. The selected stands were located on comparable sites and covered an age range of 44 to 114 years. Coarse roots (d?\ge?2 mm) of 42 spruce and 27 beech trees were sampled by excavating the entire root system. A linear model with logarithmic transformation of the variables was developed to describe the relationship between the coarse root biomass (CRB, dry weight) and the corresponding tree diameter at breast height (DBH). The coefficients of determination (R 2) attained values between 0.92 for spruce and 0.94 for beech; the logarithmic standard deviation values were between 0.29 and 0.43. A significantly different effect of tree species on the model estimates could not be detected by an analysis of co-variance (ANCOVA). For spruce, the derived relationships were similar to those reported in previous studies, but not for beech. Biomass partitioning in the tree compartments above and below ground differs significantly between spruce (coarse root/shoot ratio 0.16±0.06) and beech (coarse root/shoot ratio 0.10±0.03) in the mixed stands. These results are similar to those given in other studies involving pure spruce and beech stands on comparable sites in the region, although the ratios of pure stands in other regions growing under different site conditions are somewhat higher. Comparing trees of the same DBH classes, root/shoot ratios of spruce are 1.2 to 3 times higher than those of beech. Dominant spruce trees (DBH>60 cm) attained the highest ratios, suppressed beech trees (DBH<10 cm) the lowest. Site conditions of varying climate and soils and interspecific tree competition are likely to affect root/shoot ratio and DBH-coarse root biomass relationships. The greater variability in beech compared with spruce indicates a high 'plasticity' and adaptability of beech carbon allocation. Thus, the derived equations are useful for biomass estimates of coarse roots involving trees of different ages in mixed stands of spruce and beech in the Solling Mountains. However, application of these relationships to stands in other regions would need further testing.  相似文献   

13.
The dynamics of organic matter accumulated in the soil and main vegetation elements was analyzed for post-logging forest ecosystem succession series in eastern Baikal region. The phytomass was found to allocate up 63 and 50% of carbon in undisturbed Scots pine and fir stands, respectively. The post-logging phytomass contribution to the total carbon pool appeared to decrease down to 16% in Scots pine and 6% in fir stands. In Scots pine stands, carbon storage was determined to account for almost 70% of the initial carbon 60 years after logging. In 50- to 55-year-old fir stands, carbon recovered its initial pool only by 10%. Soil carbon recorded in recently logged Scots pine and fir sites appeared to be 5 and 16 times that accumulated in the phytomass, respectively. The ratio between phytomass carbon and soil organic matter recovered back to the prelogging level in Scots pine stands by the age of 50–60 years. While phytomass carbon also increased in fir stand of the same age, it did not reach the level of the control stand.  相似文献   

14.
How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.  相似文献   

15.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

16.
Jack pine and trembling aspen are two early-seral boreal tree species with contrasting nutrient cycling strategies. Both species may form adjacent mono-specific stands separated by sharp compositional boundaries. We hypothesized that such boundaries result in wider functional ecotones. Spatial transitions in humus forms, forest floor chemistry and microbial communities were assessed across 32 m long transects set perpendicular to sharp compositional boundaries separating four jack pine and aspen stands. Split moving window analysis (SMWA) and moving window regression analysis (MWRA) were used to locate functional boundaries and ecotones. We found a gradual transition from moder (aspen) to mor (jack pine) humus spanning 16 m across the compositional boundary. An abrupt increase in forest floor water content at 3 m within jack pine stands was possibly due to aspen roots foraging for water beyond the boundary. The functional boundary and associated ecotone for forest floor pH, C:N ratio, Mg and ammonification were skewed toward jack pine stands, likely the result of aspen leaf dispersal. Low nitrification rates throughout jack pine stands and up to 11 m into aspen stands suggested that jack pine roots might extend far within aspen stands and produce metabolites that suppress nitrification. SMWA performed on the multivariate dataset of microbial fatty acids (FAs) revealed three distinct forest floor microbial communities that were skewed toward jack pine stands. Pine-type communities were associated to fungal FAs, pine-type and transition-type communities to non-fungal eukaryotic FAs, and aspen-type communities to bacterial FAs. Taken collectively, our data delimit a 24 m wide functional ecotone straddling sharp compositional boundaries separating trembling aspen and jack pine stands. We conclude that the functional diversity of boreal landscapes, where adjacent mono-specific stands are prevalent, is related to the patchiness of the landscape.  相似文献   

17.
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0–10 yr old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height was first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, and also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age-specific parameters of biomass allocation patterns.  相似文献   

18.
In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha?1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose. ECM colonization increased with increasing pH in the humus layer from 62% colonization at pH?=?3.5 to 90% at pH?=?6.5 and decreased with increasing amount of extractable phosphorus (P) in the humus. Liming did not affect the frequencies of different ECM morphotypes or dead short root tips, the fine root biomass or necromass. ECM colonization was uncorrelated with needle nutrient concentrations or tree increment. Liming did not significantly affect tree growth. However, nutrient concentrations of current-year needles were affected by prior liming. Ca concentrations in current-year needles increased from approximately 15 mg g?1 in control treatments to more than 30 mg g?1 in limed plots, whereas concentrations of Mn, Al, Fe, and in two stands, B, decreased due to liming. In conclusion, liming with doses up to 15 Mg ha?1 was detectable in stands 35 years after treatment. The liming significantly increased the ECM colonization of Scots pine fine roots, increased the needle nutrient concentration of Ca and decreased the needle concentrations of Mn, Al, and Fe.  相似文献   

19.
In pure and mixed stands of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.  相似文献   

20.
Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species-specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60–70-mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species-specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号