首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The reduced antitumor antibiotic mitomycin C in aqueous solution exposed to air gives a 36-line electron spin resonance spectrum of the semiquinone identified by computer simulation. Incubation of this radical with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) gives the PBN.OH nitroxide radical identified by independent generation. This nitroxide radical is also formed from similar treatment of a DNA to which mitomycin C is covalently attached. Incubation of the semiquinone from mitomycin C, mitomycin B, or streptonigrin (SN) with catalase or with superoxide dismutase inhibits the generation of OH, implying the intermediacy of H2O2 and O2 in its formation. The formation of the spin-trapped nitroxide radical is similarly inhibited by EDTA, suggesting the intermediacy of trace metal ions in the generation of hydroxyl radicals from SN. The results are consistent with the generation by the aminoquinone antibiotics in vivo of OH. already implicated in the degradation of DNA.  相似文献   

2.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical ((.-)OH) formation from H(2)O(2) in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited (.-)OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the (.-)OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H(2)O(2). These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

3.
NADH-photosensitized in vitro formation of single-stranded breaks in plasmid DNA pBR322 depends on both the concentration of the sensitizer and the influence of near-UV radiation (320-400 nm). Scavengers and inhibitors of different activated oxygen species (sodium azide, sodium benzoate, catalase and superoxide dismutase) prevent the formation of breaks in full or partly. The data obtained show that hydroxyl radical (.OH) and singlet oxygen (1O2) are directly involved in the induction of breaks. In this process hydrogen peroxide (H2O2) plays the role of an intermediate in the reaction of .OH formation from superoxide anion-radical (O2-.) which is the first NAD.H-photogenerated product.  相似文献   

4.
lambda DNA (a double-stranded DNA) was exposed to several adriamycin-mediated active oxygen generating systems (O2- and H2O2 generating, OH generating, and perferryl ion complex generating), extracted, and analyzed by gel electrophoresis on agarose gel. Only the DNA exposed to and subsequently isolated from the adriamycin-mediated OH generating system contained many DNA fragments of low molecular weight, indicating the breakage of DNA strands. Such a breakage was strikingly inhibited by catalase or 50 mM sodium benzoate, but not by superoxide dismutase. The local OH concentration near the DNA strand was considered to be important for DNA strand cleavage.  相似文献   

5.
It has been shown that NADH photosensitize in vitro single-strand breaks formation in double-strand plasmid DNA pBR 322 upon near-UV (320-400 nm) irradiation. The number of single-strand breaks depends both on UV light dose and sensitizer concentration. Addition of catalase and sodium benzoate strongly decreases the single-strand breaks formation. The results show an important role of hydrogen peroxide (H2O2) and hydroxyl radical (.OH) in inducing single-strand breaks in plasmid DNA irradiated by near-UV radiation in the presence of NADH.  相似文献   

6.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

7.
Shen Z  Wu W  Hazen SL 《Biochemistry》2000,39(18):5474-5482
A variety of chronic inflammatory conditions are associated with an increased risk for the development of cancer. Because of the numerous links between DNA oxidative damage and carcinogenesis, a potential role for leukocyte-generated oxidants in these processes has been suggested. In the present study, we demonstrate a novel free transition metal ion-independent mechanism for hydroxyl radical ((*)OH)-mediated damage of cellular DNA, RNA, and cytosolic nucleotides by activated neutrophils and eosinophils. The mechanism involves reaction of peroxidase-generated hypohalous acid (HOCl or HOBr) with intracellular superoxide (O(2)(*)(-)) forming (*)OH, a reactive oxidant species implicated in carcinogenesis. Incubation of DNA with either isolated myeloperoxidase (MPO) or eosinophil peroxidase (EPO), plasma levels of halides (Cl(-) and Br(-)), and a cell-free O(2)(*)(-) -generating system resulted in DNA oxidative damage. Formation of 8-hydroxyguanine (8-OHG), a mutagenic base which is a marker for (*)OH-mediated DNA damage, required peroxidase and halides and occurred in the presence of transition metal chelators (DTPA +/- desferrioxamine), and was inhibited by catalase, superoxide dismutase (SOD), and scavengers of hypohalous acids. Similarly, exposure of DNA to either neutrophils or eosinophils activated in media containing metal ion chelators resulted in 8-OHG formation through a pathway that was blocked by peroxidase inhibitors, hypohalous acid scavengers, and catalytically active (but not heat-inactivated) catalase and SOD. Formation of 8-OHG in target cells (HA1 fibroblasts) occurred in all guanyl nucleotide-containing pools examined following exposure to both a low continuous flux of HOCl (at sublethal doses, as assessed by [(14)C]adenine release and clonogenic survival), and hyperoxia (to enhance intracellular O(2)(*)(-) levels). Mitochondrial DNA, poly A RNA, and the cytosolic nucleotide pool were the primary targets for oxidation. Moreover, modest but statistically significant increases in the 8-OHG content of nuclear DNA were also noted. These results suggest that the peroxidase-H(2)O(2)-halide system of leukocytes is a potential mechanism contributing to the well-established link between chronic inflammation, DNA damage, and cancer development.  相似文献   

8.
丝裂霉素促进活性氧自由基生成的研究   总被引:1,自引:0,他引:1  
本文探讨了抗癌药丝裂霉素对活性氧自由基,超氧负离子自由基(O_2~-),羟自由基(OH)生成反应的作用,实验表明,丝裂霉素对O_2~-及OH的生成有明显的促进作用,其作用随着丝裂霉素浓度的增加而加强。分别测定了它对两种自由基生成反应的促进率。  相似文献   

9.
Previous studies have demonstrated that the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco) is site-specifically cleaved by a hydroxyl radical (*OH) generated in the illuminated chloroplast lysates or by an artificial *OH-generating system. However, it is not known whether such cleavage of the LSU by reactive oxygen species (ROS) actually occurs in an intact leaf. When leaf discs of chilling-sensitive cucumber (Cucumis sativus L.) were illuminated at 4 degrees C, five major fragments of the LSU were observed. This fragmentation was completely inhibited by ROS scavengers, such as n-propyl gallate (for *OH) and 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (for superoxide). FeSO4 stimulated this fragmentation, whereas an iron-specific chelator, deferoxamine, suppressed it. Furthermore, such fragments were identical to those generated from the purified Rubisco by an *OH-generating system in vitro on two-dimensional PAGE. These results indicate that the direct fragmentation of the LSU by reactive oxygen species also occurs in an intact leaf.  相似文献   

10.
In humans both UV-A and UV-B can cause gene mutations and suppress immunity, which leads to skin cancer, including melanoma. Inhibition of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears particularly promising as ROS and RNS production by both UV-A and UV-B contributes to inflammation, immunosuppression, gene mutation and carcinogenesis. We evaluated the effect of two lichen compounds, sphaerophorin (depside) and pannarin (depsidone) on pBR322 DNA cleavage induced by hydroxyl radicals (()OH), and by nitric oxide (NO), and their superoxide anion (O(2)(-)) scavenging capacity. In addition, we investigated the growth inhibitory activity of these compounds against human melanoma cells (M14 cell line). Sphaerophorin and pannarin showed a protective effect on plasmid DNA and exhibited a superoxide dismutase like effect. The data obtained in cell culture show that these lichen metabolites inhibit the growth of melanoma cells, inducing an apoptotic cell death, demonstrated by the fragmentation of genomic DNA (COMET and TUNEL Assays) and by a significant increase of caspase-3 activity, and correlated, at least in part, to the increase of ROS generation, These results confirm the promising biological properties of sphaerophorin and pannarin and encourage further investigations on their molecular mechanisms.  相似文献   

11.
Oxidative DNA damage is involved in mutagenesis, carcinogenesis, aging, radiation effects, and the action of several anticancer drugs. Accumulated evidence indicates that iron may play an important role in those processes. We studied the in vitro effect of low concentrations of Fe(II) alone or Fe(III) in the presence of reducing agents on supercoiled plasmid DNA. The assay, based on the relaxation and linearization of supercoiled DNA, is simple yet sensitive and quantitative. Iron mediated the production of single and double strand breaks in supercoiled DNA. Iron chelators, free radical scavengers, and enzymes of the oxygen reduction pathways modulated the DNA damage. Fe(III)-nitrilotriacetate (NTA) plus either H2O2, L-ascorbate, or L-cysteine produced single and double strand breaks as a function of reductant concentration. A combination of 0.1 microM Fe(III)-NTA and 100 microM L-ascorbate induced detectable DNA strand breaks after 30 min at 24 degrees C. Whereas superoxide dismutase was inhibitory only in systems containing H2O2 as reductant, catalase inhibited DNA breakage in all the iron-mediated systems studied. The effect of scavengers and enzymes indicates that H2O2 and .OH are involved in the DNA damaging process. These reactions may account for the toxicity and carcinogenicity associated with iron overload.  相似文献   

12.
A mechanism for the production of hydroxyl radical (*OH) during the oxidation of hydroquinones by laccase, the ligninolytic enzyme most widely distributed among white-rot fungi, has been demonstrated. Production of Fenton reagent (H2O2 and ferrous ion), leading to *OH formation, was found in reaction mixtures containing Pleurotus eryngii laccase, lignin-derived hydroquinones, and chelated ferric ion. The semiquinones produced by laccase reduced both ferric to ferrous ion and oxygen to superoxide anion radical (O2*-). Dismutation of the latter provided the H2O2 for *OH generation. Although O2*- could also contribute to ferric ion reduction, semiquinone radicals were the main agents accomplishing the reaction. Due to the low extent of semiquinone autoxidation, H2O2 was the limiting reagent in Fenton reaction. The addition of aryl alcohol oxidase and 4-methoxybenzyl alcohol (the natural H2O2-producing system of P. eryngii) to the laccase reaction greatly increased *OH generation, demonstrating the synergistic action of both enzymes in the process.  相似文献   

13.
Superoxide and the production of oxidative DNA damage.   总被引:19,自引:9,他引:10       下载免费PDF全文
K Keyer  A S Gort    J A Imlay 《Journal of bacteriology》1995,177(23):6782-6790
The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron.  相似文献   

14.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

15.
Cellular accumulation of 5-aminolevulinic acid (ALA), the first specific intermediate of heme biosynthesis, is correlated in liver biopsy samples of acute intermittent porphyria affected patients with an increase in the occurrence of hepatic cancers and the formation of ferritin deposits in hepatocytes. 5-Aminolevulinic acid is able to undergo enolization and to be subsequently oxidized in a reaction catalyzed by iron complexes yielding 4,5-dioxovaleric acid (DOVA). The released superoxide radical (O(*-)(2)) is involved in the formation of reactive hydroxyl radical ((*)OH) or related species arising from a Fenton-type reaction mediated by Fe(II) and Cu(I). This leads to DNA oxidation. The metal catalyzed oxidation of ALA may be exalted by the O(*-)(2) and enoyl radical-mediated release of Fe(II) ions from ferritin. We report here the potentiating effect of ferritin on the ALA-mediated cleavage of plasmid DNA and the enhancement of the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodGuo). Plasmid pBR322 was incubated with ALA and varying amounts of purified ferritin. DNA damage was assessed by gel electrophoresis analysis of the open and the linear forms of the plasmid from the native supercoiled structure. Addition of either the DNA compacting polyamine spermidine or the metal chelator ethylenediaminetetraacetic acid (EDTA) inhibited the damage. It was also shown that ALA in the presence of ferritin is able to increase the oxidation of the guanine moiety of monomeric 2'-deoxyguanosine (dGuo) and calf thymus DNA (CTDNA) to form 8-oxodGuo as inferred from high performance liquid chromatography (HPLC) measurements using electrochemical detection. The formation of the adduct dGuo-DOVA was detected in CTDNA upon incubation with ALA and ferritin. In a subsequent investigation, the aldehyde DOVA was also able to induces strand breaks in pBR322 DNA.  相似文献   

16.
Oxidative damage to DNA has been reported to occur in a wide variety of disease states. The most widely used "marker" for oxidative DNA damage is 8-hydroxyguanine. However, the use of only one marker has limitations. Exposure of calf thymus DNA to an .OH-generating system (CuCl(2), ascorbate, H(2)O(2)) or to hypochlorous acid (HOCl), led to the extensive production of multiple oxidized or chlorinated DNA base products, as measured by gas chromatography-mass spectrometry. The addition of peroxynitrite (ONOO(-)) (<200 microM) or SIN-1 (1mM) to oxidized DNA led to the extensive loss of 8-hydroxyguanine, 5-hydroxycytosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 2-hydroxyadenine, 8-hydroxyadenine, and 4,6-diamino-5-formamidopyrimidine were lost at higher ONOO(-) concentrations (>200 microM). Exposure of DNA to HOCl led to the generation of 5-Cl uracil and 8-Cl adenine and addition of ONOO(-) (<200 microM) or SIN-1 (1mM) led to an extensive loss of 8-Cl adenine and a small loss of 5-Cl uracil at higher concentrations (>500 microM). An .OH-generating system (CuCl(2)/ascorbate/H(2)O(2)) could also destroy these chlorinated species. Treatment of oxidized or chlorinated DNA with acidified nitrite (NO(2)(-), pH 3) led to substantial loss of various base lesions, in particular 8-OH guanine, 5-OH cytosine, thymine glycol, and 8-Cl adenine. Our data indicate the possibility that when ONOO(-), nitrite in regions of low pH or .OH are produced at sites of inflammation, levels of certain damaged DNA bases could represent an underestimate of ongoing DNA damage. This study emphasizes the need to examine more than one modified DNA base when assessing the role of reactive species in human disease.  相似文献   

17.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

18.
NNK诱发BEP2D细胞产生活性氧及其对DNA的损伤   总被引:4,自引:0,他引:4  
通过测定细胞内和细胞上清中活性氧(reactive oxygen species,ROS)水平,以及DNA 加合物——8-羟基脱氧鸟嘌呤核苷(8-hydroxydeoxyguanosine,OH8dG)含量,对烟草特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(4-(m ethylnitrosam ino)-1-(3-pyridyl)-1-butanone,NNK)诱发人乳头状病毒永生化的人支气管上皮细胞(hum an papillom avirus-im m ortalized hum anbronchialepithelialcellline,BEP2D)产生的ROS及其对DNA 的氧化损伤进行研究,并观察纳米硒的保护作用.结果表明,BEP2D 细胞经不同浓度的NNK 作用后,细胞内和细胞上清中ROS以及OH8dG含量均显著增加,并有较好的剂量效应关系.1 μm ol·L- 1纳米硒(nanoselenuim ,NS)能明显抑制NNK 诱发BEP2D细胞产生的ROS及OH8dG 水平.揭示NNK 能造成细胞的氧化损伤,而NS对NNK 所致细胞的氧化损伤有保护作用.  相似文献   

19.
芦丁等天然产物清除活性氧自由基O_(?)~-和·OH的ESR研究   总被引:16,自引:2,他引:14  
本文用促癌剂PMA(phorbol myristate acetate)刺激人多形核白细胞(PMN)呼吸暴发产生的活性氧自由基,Fenton反应产生的羟自由基·OH,光照核黄素和黄嘌呤/黄嘌呤氧化酶体系中产生的超氧阴离子自由基O(?)为模型,用自旋捕集方法研究天然产物芦丁,槲皮素,异槲皮苷和汉防已甲素对活性氧自由基(?)和·OH的清除作用.除汉防已甲素外,其它药物都能很明显地清除PMN呼吸暴发过程中产生的活性氧自由基.芦丁和异槲皮苷对(?)的清除率分别高达78.1%和79.9%,远远大于维生素E(12.7%)的作用.除汉防已甲素外,其它三种药物对·OH的清除作用也大于维生素E.四种天然产物对O(?)和·OH的清除作用都小于维生素C.  相似文献   

20.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号