首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

2.
Storage of seeds for extended periods causes a number of degradative changes related to the aging process such as decreased seedling vigor and reduced germination. In this study, molecular markers were used to study the aging process in seeds of two different plants species. Seeds of three differentially aged seed groups, including control (un-aged), naturally aged, and accelerated aging, from soybean (Glycine max) and safflower (Carthamus tinctorius) were evaluated for genetic variability using random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. For both plant species, naturally aged and accelerated aged groups clustered together with RAPD markers, whereas control and naturally aged seeds showed similarity in both AFLP and SSR profiles. Based on these findings, it can be concluded that observed changes in DNA profiles of seeds from different aged groups did not contribute to accumulation of genetic variations of the same magnitude. Therefore, seed of similar viability must be selected for molecular marker analysis for plant variety protection, among other comparative studies.  相似文献   

3.
Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique capable of detecting more than 50 independent loci in a single PCR reaction. The objectives of the present study were to: (1) assess the extent of AFLP variation in cultivated (Gycine max L. Merr.) and wild soybean (G. soja Siebold & Zucc.), (2) determine genetic relationships among soybean accessions using AFLP data, and (3) evaluate the usefulness of AFLPs as genetic markers. Fifteen AFLP primer pairs detected a total of 759 AFLP fragments in a sample of 23 accessions of wild and cultivated soybean, with an average of 51 fragments produced per primer pair per accession. Two-hundred and seventy four fragments (36% of the total observed) were polymorphic, among which 127 (17%) were polymorphic in G. max and 237 (31%) were polymorphic in G. soja. F2 segregation analysis of six AFLP fragments indicated that they segregate as stable Mendelian loci. The number of polymorphic loci detected per AFLP primer pair in a sample of 23 accessions ranged from 9 to 27. The AFLP phenotypic diversity values were greater in wild than in cultivated soybean. Cluster and principal component analyses using AFLP data clearly separated G. max and G. soja accessions. Within the G. max group, adapted soybean cultivars were tightly clustered, illustrating the relatively low genetic diversity present in cultivated soybean. AFLP analysis of four soybean near-isogenic lines (NILs) identified three AFLP markers putatively linked to a virus resistance gene from two sources. The capacity of AFLP analysis to detect thousands of independent genetic loci with minimal cost and time requirements makes them an ideal marker for a wide array of genetic investigations.  相似文献   

4.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

5.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

6.
Multiplexing involves the analysis of several markers in a single gel lane that is based on the allele size range of marker loci. Multiplex SSR marker analysis is conducted with primers that are labeled with one of three dyes. The development of an SSR multiplex system requires estimates of the allele size range of markers to strategize primer labeling and for grouping markers into multiplex sets. A method is presented that describes the development of multiplex sets of SSR markers in soybean (Glycine max (L.) Merr.) by the selective placement of primer sites and by the analysis of diverse germplasm. Primer sites were placed at specific distances from the SSR to adjust the allele size range of marker loci. The analysis of pooled DNA samples comprising diverse soybean genotypes provided robust estimates of the allele size range of marker loci that enabled the development of multiplex sets. Eleven multiplex sets comprising 74 SSR markers distributed across the 20 linkage groups of soybean were developed. Multiplex sets constructed from the analysis of diverse soybean germplasm should have a wide range of genotyping applications. The procedures used in this study were systematic and rapid and should be applicable for multiplex development in any species with SSR marker technology.  相似文献   

7.
A comparison of the different methods of the estimation of genetic diversity is important to evaluate their utility as a tool in germplasm conservation and plant breeding. Amplified fragment length polymorphism (AFLP), microsatellites or SSR and morphological traits markers were used to evaluate 45 sorghum germplasm for genetic diversity assessment and discrimination power. The mean polymorphism information content (PIC) values were 0.65 (AFLPs) and 0.46 (SSRs). The average pairwise genetic distance estimates were 0.57 (morphological traits), 0.62 (AFLPs) and 0.60 (SSRs) markers data sets. The Shannon diversity index was higher for morphological traits (0.678) than AFLP (0.487) and SSR (0.539). The correlation coefficients obtained by the Mantel matrix correspondence test, which was used to compare the cophenetic matrices for the different markers, showed that estimated values of genetic relationship given for AFLP and SSR markers, as well as for morphological and SSR markers were significantly related (p <0.001). However, morphological and AFLP data showed non-significant correlation (p >0.05). Both data sets from AFLP and SSR allowed all accessions to be uniquely identified; two accessions could not be distinguished by the morphological data. In summary, AFLP and SSR markers proved to be efficient tools in assessing the genetic variability among sorghum genotypes. The patterns of variation appeared to be consistent for the three marker systems, and they can be used for designing breeding programmes, conservation of germplasm and management of sorghum genetic resources.  相似文献   

8.
The application of AFLPs, RAPDs and SSRs to examine genetic relationships in the primary northwestern European cultivated potato gene pool was investigated. Sixteen potato cultivars were genotyped using five AFLP primer combinations, 14 RAPD primers, and 17 database-derived SSR primer pairs. All three approaches successfully discriminated between the 16 cultivars using a minimum of one assay. Similarity matrices produced for each marker type on the basis of Nei and Li coefficients showed low correlations when compared with different statistical tests. Dendrograms were produced from these data for each marker system. The usefulness of each system was examined in terms of number of loci revealed (effective multiplex ratio, or EMR) and the amount of polymorphism detected (diversity index, or DI). AFLPs had the highest EMR, and SSRs the highest DI. A single parameter, marker index (MI), which is the product of DI and EMR, was used to evaluate the overall utility of each marker system. The use of these PCR-based marker systems in potato improvement and statutory applications is discussed.Abbreviations: PCR, polymerase chain reaction; AFLP, amplified fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; DNA, deoxyribonucleic acid; EMR, effective multiplex ratio; DI, diversity index; MI, marker index; RFLP, restriction fragment length polymorphism.  相似文献   

9.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

10.
Tribulus terrestris is well known for its medicinal importance in curing urino-genital disorders. Amplified fragment length polymorphism (AFLP), selective amplification of microsatellite polymorphic loci (SAMPL), inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) markers were used for the first time for the detection of genetic polymorphism in this medicinal herb from samples collected from various geographical regions of India. Six assays each of AFLP and SAMPL markers and 21 each of ISSR and RAPD markers were utilized. AFLP yielded 500 scorable amplified products, of which 82.9% were polymorphic. SAMPL primers amplified 488 bands, 462 being polymorphic (94.7%). The range of amplified bands was 66 [(TC)8G + M-CAG] to 98 [(CA)6AG + M-CAC] and the percentage polymorphism, 89.9 [from (CT)4C (AC)4A + M-CTG] to 100 [from (GACA)4 + M-CTA]. The ISSR primers amplified 239 bands of 0.4–2.5 kb, 73.6% showed polymorphism. The amplified products ranged from 5 to 16 and the percentage polymorphism 40–100. RAPD assays produced 276 bands, of which 163 were polymorphic (59%). Mantel test employed for detection of goodness of fit established cophenetic correlation values above 0.9 for all the four marker systems. The dendrograms and PCA plots derived from the binary data matrices of the four marker systems are highly concordant. High bootstrap values were obtained at major nodes of phenograms through WINBOOT software. The relative efficiency of the four molecular marker systems calculated on the basis of multiplex ratio, marker index and average heterozygosity revealed SAMPL to be the best. Distinct DNA fingerprinting profile, unique to every geographical region could be obtained with all the four molecular marker systems. Clustering can be a good indicator for clear separation of genotypes from different regions in well-defined groups that are supported by high bootstrap values.  相似文献   

11.
Southern corn rust (SCR) is a fungal disease caused by Puccinia polysora Underw, which can infect maize and may result in substantial yield losses in maize production. The maize inbred line Qi319 carries the SCR resistance gene RppQ. In order to identify molecular markers linked to the RppQ gene, several techniques were utilized including random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and amplified fragment length polymorphism (AFLP). In addition, sequence characterized amplified region (SCAR) techniques combined with bulked segregant analysis (BSA) were used. Seven RAPD markers, eight SSR markers, and sixty-three AFLP primer combinations amplified polymorphisms between two parents and two bulk populations. A large F2 population was used for genetic analysis and for fine mapping of the RppQ gene region. One AFLP polymorphic band, M-CAA/E-AGC324, was converted to a SCAR marker, MA7, which was mapped to a position 0.46 cM from RppQ. Finally, the RppQ gene was mapped between the SCAR marker MA7 and the AFLP marker M-CCG/E-AGA157 with distances of 0.46 and 1.71 cM, respectively.  相似文献   

12.
We have constructed a tomato genetic linkage map based on an intraspecific cross between two inbred lines of Lycopersicon esculentum and L. esculentum var. cerasiforme. The segregating population was composed of 153 recombinant inbred lines. This map is comprised of one morphological, 132 RFLP (restriction fragment length polymorphism, including 16 known-function genes), 33 RAPD (random amplified polymorphic DNA), and 211 AFLP (amplified fragment length polymorphism) loci. We compared the 3 types of markers for their polymorphism, segregation, and distribution over the genome. RFLP, RAPD, and AFLP methods revealed 8.7%, 15.8%, and 14.5% informative bands, respectively. This corresponded to polymorphism in 30% of RFLP probes, 32% of RAPD primers, and 100% of AFLP primer combinations. Less deviation from the 1:1 expected ratio was obtained with RFLP than with AFLP loci (8% and 18%, respectively). RAPD and AFLP markers were not randomly distributed over the genome. Most of them (60% and 80%, respectively) were grouped in clusters located around putative centromeric regions. This intraspecific map spans 965 cM with an average distance of 8.3 cM between markers (of the framework map). It was compared to other published interspecific maps of tomato. Despite the intraspecific origin of this map, it did not show any increase in length when compared to the high-density interspecific map of tomato.  相似文献   

13.
 We constructed a bacterial artificial chromosome (BAC) library for soybean (Glycine max) consisting of approximately 30 000 clones with an average insert size of 120 kilobase pairs. The library was successfully screened with restriction fragment length polymorphism (RFLP) and microsatellite markers tightly linked to a major resistance gene for the cyst nematode, Heterodera glycines. Since many soybean RFLPs hybridize to duplicate loci, BACs homologous to duplicate RFLP loci were distinguished by digestion with the restriction enzyme originally used to map the RFLP, followed by a comparison of the hybridizing fragments. Linkage mapping of BAC clones identified with markers linked to the cyst nematode resistance gene demonstrated that these clones were located at the expected chromosomal positions and that there were no indications of chimeras within the genomic inserts. Received: 3 July 1997/Accepted: 26 August 1997  相似文献   

14.
This study characterises the genetic variability of fig, Ficus carica L., using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. It compares the efficiency and utility of the two techniques in detecting variation and establishing genetic relationships among Tunisian fig cultivars. Our results show that using both marker systems, the Tunisian fig germ plasm is characterised by having a large genetic diversity at the deoxyribonucleic acid level, as most of AFLP bands were detected and all SSR markers were polymorphic. In fact, 351 (342 polymorphic) and 57 (57 polymorphic) bands were detected using AFLP and SSR primers, respectively. SSR markers were the most polymorphic with an average polymorphic information content value of 0.94, while AFLP markers showed the highest effective multiplex ratio (56.9) and marker index (45.2). The effective marker index was recorded highest (4.19) for AFLP markers and lowest (0.70) for the SSR ones. Our results demonstrate that (1) independent as well as combined analyses of cluster analyses of SSR and AFLP fragments showed that cultivars are clustered independently from their geographical origin, horticultural classifications and tree sex; (2) the analysis of molecular variance allowed the partitioning of genetic variation within and among fig groups and showed greater variation within groups and (3) AFLP and SSR markers datasets showed positive correlation. This study suggests the SSR and AFLP markers are suitable for diversity analysis and cultivars fingerprinting. An understanding of the genetic diversity and population structure of F. carica in Tunisia can also provide insight into the conservation and management of this species.  相似文献   

15.
DNA分子标记技术在濒危物种保护中的应用   总被引:1,自引:0,他引:1  
近20年来,随着分子生物学技术的迅猛发展,涌现出一批高效、可靠的DNA分子标记技术.本文论述了限制性片段长度多态性、微卫星DNA、随机扩增多态性DNA、扩增片段长度多态性等DNA分子标记技术的基本原理及技术特点;同时,介绍了DNA分子标记在濒危物种种群遗传学研究、致危因素分析及保护策略的制定等保护生物学方面的应用.  相似文献   

16.
This work represents the first application of the amplified fragment length polymorphism (AFLP) technique and the random amplified polymorphic DNA (RAPD) technique in the study of genetic variation within and among five geographical populations of M. nemurus. Four AFLP primer combinations and nine RAPD primers detected a total of 158 and 42 polymorphic markers, respectively. The results of AFLP and RAPD analysis provide similar conclusions as far as the population clustering analysis is concerned. The Sarawak population, which is located on Borneo Island, clustered by itself and was thus isolated from the rest of the populations located in Peninsular Malaysia. Both marker systems revealed high genetic variability within the Universiti Putra Malaysia (UPM) and Sarawak populations. Three subgroups each from the Kedah, Perak, and Sarawak populations were detected by AFLP but not by RAPD. Unique AFLP fingerprints were also observed in some unusual genotypes sampled in Sarawak. This indicates that AFLP may be a more efficient marker system than RAPD for identifying genotypes within populations.  相似文献   

17.
The genus Origanum is often referred to as an under-utilized taxon because of its complex taxonomy. Origanum vulgare L., the most variable species of the genus, is a spice and medicinal herb that is characterized by high morphological diversity (six subspecies). In this study, the relative efficiencies of two PCR-based marker approaches, amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL), were used for comparable genetic diversity surveys and subspecies discrimination among 42 oregano accessions. Seven assays each of AFLP and SAMPL markers were utilized. Effective multiplex ratio (EMR), average heterozygosity (Hav-p), marker index (MI), and resolving power (RP) of the primer combinations were calculated for the two marker systems. UPGMA and Structure analysis along with PCoA plots derived from the binary data matrices of the two markers depicted the genetic distinction of accessions. Our results indicate that both marker systems are suitable but SAMPL markers are slightly more efficient in differentiating accessions and subspecies than AFLPs.  相似文献   

18.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

19.
The genetic variability characterization of the accessions of the germplasm collection, using molecular markers, is being applied as a complementary strategy to the traditional approaches to redefine the plant genetic resources. In this study, we compared the informativeness and efficiency of the molecular markers RAPD, AFLP and SSR in the analysis of 94 accessions of Coffea canephora germplasm held by the breeding program of the Brazilian Agricultural Research Corporation (Embrapa), Rondônia State, Brazil. For this, we considered the marker’s discriminatory power and level of polymorphism detected and also the genetic relationships and clustering (dendrogram) analysis. The RAPD marker yielded low-quality data and problems in the discrimination of some accessions, being less recommended for genetic studies of C. canephora. The SSRs had a higher level of information content and yielded high-quality data, while AFLP was the most efficient marker system because of the simultaneous detection of abundant polymorphism markers per few reactions. Our results indicate that AFLP and SSR, allies to the intrinsic characteristics of each technique, are the most suitable molecular markers for genetic studies of C. canephora. However, the choice of AFLP or SSR in the species characterization should be made in agreement with some characteristics that are discussed in this work.  相似文献   

20.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号