首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Due to the difficulty of multiple deletions using the Cre/loxP system, a simple, markerless multiple-deletion method based on a Cre/mutant lox system combining a right-element (RE) mutant lox site with a left-element (LE) mutant lox site was employed for large-scale genome rearrangements in Corynebacterium glutamicum. Eight distinct genomic regions that had been identified previously by comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes were targeted for deletion. By homologous recombination, LE and RE mutant lox sites were integrated at each end of a target region. Highly efficient and accurate deletions between the two chromosomal mutant lox sites in the presence of Cre recombinase were realized. A deletion mutant lacking 190 kb of chromosomal regions, encoding a total of 188 open reading frames (ORFs), was obtained. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of numerous predicted ORFs, the mutant exhibited normal growth under standard laboratory conditions. The Cre/loxP system using a pair of mutant lox sites provides a new, efficient genome rearrangement technique for C. glutamicum. It should facilitate the understanding of genome functions of microorganisms.  相似文献   

2.
The Cre/lox site-specific recombination controls the excision of a target DNA segment by recombination between two lox sites flanking it, mediated by the Cre recombinase. We have studied the functional expression of the Cre/lox system to excise a transgene from the rice genome. We developed transgenic plants carrying the target gene, hygromycin phosphotransferase (hpt) flanked by two lox sites and transgenic plants harboring the Cre gene. Each lox plant was crossed with each Cre plant reciprocally. In the Cre/lox hybrid plants, the Cre recombinase mediates recombination between two lox sites, resulting in excision of the hpt gene. The recombination event could be detected because it places the CaMV 35S promoter of the hpt gene adjacent to a promoterless gusA gene; as a result the gusA gene is activated and its expression could be visualized. In 73 Cre/lox hybrid plants from various crosses of T0 transgenic plants, 19 expressed GUS, and in 132 Cre/lox hybrid plants from crosses of T2 transgenic plants, 77 showed GUS expression. Molecular data proved the excision event occurred in all the GUS+ plants. Recombination occurred with high efficiency at the early germinal stage, or randomly during somatic development stages. Received. 2 April 2001 / Accepted: 29 June 2001  相似文献   

3.
With current plant transformation methods (Agrobacterium, biolistics and protoplast fusion), insertion of DNA into the genome occurs randomly and in many instances at multiple sites. Associated position effects, copy number differences and multigene interactions can make gene expression experiments difficult to interpret and plant phenotypes less predictable. An alternative approach to random integration of large DNA fragments into plants is to utilize one of several site-specific recombination (SSR) systems, such as Cre/lox. Cre has been shown in numerous instances to mediate lox site-specific recombination in animal and plant cells. By incorporating the Cre/lox SSR system into a bacterial artificial chromosome (BAC) vector, a more precise evaluation of large DNA inserts for genetic complementation should be possible. Site-specific insertion of DNA into predefined sites in the genome may eliminate unwanted ‘position effects’ caused by the random integration of exogenously introduced DNA. In an effort to make the Cre/lox system an effective tool for site-directed integration of large DNAs, we constructed and tested a new vector potentially capable of integrating large DNA inserts into plant and fungal genomes. In this study, we present the construction of a new BAC vector, pBACwich, for the system and the use of this vector to demonstrate SSR of large DNA inserts (up to 230 kb) into plant and fungal genomes.  相似文献   

4.
A genetic screen identifies novel non-compatible loxP sites   总被引:4,自引:2,他引:2  
The ability of the Cre/lox system to make precise genomic modifications is a tremendous accomplishment. However, recombination between cis-linked heterospecific lox sites limits the use of Cre- mediated exchange of DNA to systems where genetic selection can be applied. To circumvent this problem we carried out a genetic screen designed to identify novel mutant spacer-containing lox sites displaying enhanced incompatibility with the canonical loxP site. One of the mutant sites recovered appears to be completely stable in HEK293 cells constitutively expressing Cre recombinase and supports recombinase-mediated cassette exchange (RMCE) in bacteria and mammalian cell culture. By preventing undesirable recombination, these novel lox sites could improve the efficiency of in vivo gene transfer.  相似文献   

5.
The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specific genetic manipulation. In zebrafish, both Cre and Flp recombinases have been applied for inducible activation, inactivation and inversion of inserted genomic elements. Here we describe the addition of Dre, a heterospecific Cre-related site-specific recombinase, to the zebrafish genomic toolbox. Combining Dre-based recombination in zebrafish with established Cre/lox technology, we have established an effective strategy for transgene activation and inactivation using lox and rox (TAILOR). Using stable transgenic lines expressing tamoxifen-inducible CreERT2 and RU486-inducible DrePR fusions, we demonstrate that Cre and Dre retain non-overlapping specificities for their respective lox and rox target sites in larval zebrafish, and that their combinatorial and sequential activation can achieve precisely timed transgene activation and inactivation. In addition to TAILOR, the successful application of Dre/rox technology in zebrafish will facilitate a variety of additional downstream genetic applications, including sequential lineage labeling, complex genomic rearrangements and the precise temporal and spatial control of gene expression through the intersection of partially overlapping promoter activities.  相似文献   

6.
In a gene targeting experiment, the generation of a targeting construct often requires complex DNA manipulations. We developed a set of cassettes and plasmids useful for creating targeting vectors to modify the mammalian genome. A positive selection marker cassette (PGK/EM7p-npt), which included dual prokaryotic and eukaryotic promoters to permit consecutive selection for recombination in Escherichia coli and then in mouse embryonic stem cells, was flanked by two FRT-loxP sequences. The PGK/EM7p-npt cassette was placed between the minimum regions of a Tn7 transposable element for insertion into another DNA by means of Tn7 transposase in vitro. We also constructed a plasmid having a loxP-Zeo-loxP cassette between the modified Tn5 outer elements. These cassettes can be integrated randomly into a given genomic DNA through the in vitro transposition reaction, thus producing a collection of genomic segments flanked by loxP sites (floxed) at various positions without the use of restriction enzymes and DNA ligase. We confirmed that this system remarkably reduced the time and labor for the construction of complex gene targeting vectors.  相似文献   

7.
The bacteriophage P1 Cre—lox site-specific recombination system has been used to integrate DNA specifically at lox sites previously placed in the tobacco genome. As integrated molecules flanked by wild-type lox sites can readily excise in the presence of Cre recombinase, screening for mutant lox sites that can resist excisional recombination was performed. In gene integration experiments, wild-type and mutant lox sites were used in conjunction with two strategies for abolishing post-integration Cre activity: (i) promoter displacement of a cre-expression construct present in the target genome; and (ii) transient expression of cre. When the promoter displacement strategy was used, integrant plants were recovered after transformation with constructs containing mutant lox sequences, but not with constructs containing wild-type lox sites. When cre was transiently expressed, integrant plants were obtained after transformation with either mutant or wild-type lox sites. DNA rearrangements at the target locus were less frequent when mutant lox sites were used. DNA integration at the genomic lox site was usually without additional insertions in the genome. Thus, the Cre—lox site-specific recombination system is useful for the single-copy integration of DNA into a chromosomal lox site.  相似文献   

8.
Major advances have been made in the use of the Cre/loxP system for conditional gene targeting in the mouse. By combining the ability of Cre recombinase to invert or excise a DNA fragment, depending upon the orientation of the flanking loxP sites, and the use of wild-type loxP and variant lox511 sites, we devised an efficient and reliable Cre-mediated genetic switch, called FLEX, through which expression of a given gene can be turned off, while expression of another one can be simultaneously turned on. We discuss how this innovative, flexible and powerful approach, which virtually adapts to any kind of site-specific recombinase (e.g., Cre and Flp recombinases), can be used to easily generate, even at high throughput and genome wide scale, many genetic modifications in a conditional manner, including those which were considered as difficult or impossible to achieve.  相似文献   

9.
Sequencing of the 7 kb immC region from four P1-related phages identified a novel DNA recombinase that exhibits many Cre-like characteristics, including recombination in mammalian cells, but which has a distinctly different DNA specificity. DNA sequence comparison to the P1 immC region showed that all phages had related DNA terminase, C1 repressor and DNA recombinase genes. Although these genes from phages P7, ϕw39 and p15B were highly similar to those from P1, those of phage D6 showed significant divergence. Moreover, the D6 sequence showed evidence of DNA deletion and substitution in this region relative to the other phages. Characterization of the D6 site-specific DNA recombinase (Dre) showed that it was a tyrosine recombinase closely related to the P1 Cre recombinase, but that it had a distinct DNA specificity for a 32 bp DNA site (rox). Cre and Dre are heterospecific: Cre did not catalyze recombination at rox sites and Dre did not catalyze recombination at lox sites. Like Cre, Dre catalyzed both integrative and excisive recombination and required no other phage-encoded proteins for recombination. Dre-mediated recombination in mammalian cells showed that, like Cre, no host bacterial proteins are required for efficient Dre-mediated site-specific DNA recombination.  相似文献   

10.
11.
细胞可透过性Cre重组酶表达、纯化及生物活性检测(英)   总被引:1,自引:0,他引:1  
Cre/lox P系统由Cre位点特异重组酶和可被Cre特异性识别的lox P位点构成,该系统广泛用于条件性基因敲除和表达,以研究基因功能.为了表达和纯化一种细胞可透过性Cre重组酶(即His6-NLS-Cre-MTS);经IPTG诱导,在BL21(DE3)宿主菌成功表达His6-NLS-Cre-MTS融合蛋白,通过His-Bond Ni-NTA树脂分离并纯化了该蛋白质,随后借助细胞和非细胞的重组系统成功检测了His6-NLS-Cre-MTS的生物活性.细胞可透过性Cre重组酶提供了一种快捷而高效的在细胞和在体水平进行遗传操作的新工具.  相似文献   

12.
With the aim of developing new techniques for physical and functional genome analysis, we have introduced the Cre-lox site-specific recombination system into the cultivated tomato (Lycopersicon esculentum). Local transposition of a Ds(lox) transposable element from a T-DNA(lox) on the long arm of chromosome 6 was used to position pairs of lox sites on different closely linked loci. In vitro Cre-lox recombination between chromosomal lox sites and synthetic lox oligonucleotides cleaved the 750 Mb tomato genome with 34 pb specificity to release unique 65 kb and 130 kb fragments of chromosome 6. Parallel in vitro experiments on Saccharomyces cerevisiae chromosomes show the efficiency of cleavage to be 50% per chromosomal lox site at maximum. By expressing the Cre recombinase in tomato under control of a constitutive CaMV 35S promoter, efficient and specific somatic and germinal in planta inversion of the 130 kb fragment is demonstrated. The combined use of in vitro and in vivo recombination on genetically mapped lox sites will provide new possibilities for long range restriction mapping and in vivo manipulation of selected tomato genome segments.  相似文献   

13.
Functional lox-like sequences have been identified within the yeast and mammalian genome. These hetero-specific lox sites also allow Cre recombinase to specifically target efficient integration of exogenous DNA into the endogenous pseudo-loxlox) sequences that occur naturally in the host genome using a Cre/loxP integrative recombination system. We investigated whether the Cre/ψlox system is useful for site-specific integration of transgenes and for improving the production efficiency of transgenic animals. This is the first report on Cre-mediated integrative recombination targeting an endogenous lox-like sequence termed pseudo-loxm5loxm5) in early mouse embryos. We characterized the Cre/ψloxm5 system in embryonic environment. Cre-expressing plasmid and a transgene (CMV/LacZ gene) flanked by ψloxm5 and ψloxcorem5 sites were co-microinjected into the pronucleus of fertilized mouse oocytes. The injected eggs were transferred into foster mothers, and the recombination products were investigated. The results show that the ψloxm5 site is an active substrate for Cre-mediated recombination in the mouse embryonic environment. The transgenesis efficiency was up to 27% (6/22). The site-specific integration of the transgene into the endogenous ψloxm5 site was found in 50 % of the transgenic pups. Our findings demonstrated that the Cre/ψloxm5 integrative recombination system is an efficient and simple strategy for targeting an endogenous lox-like site in mammalian embryos.  相似文献   

14.

Background  

Escherichia coli strain EL350 contains chromosomally integrated phage lambda Red recombinase genes enabling this strain to be used for modifying the sequence of resident clones via recombineering. BAC and fosmid clones are highly suitable for modification by recombineering but, because they are present at low (1-2) copies per cell, the DNA is difficult to isolate in high yield and purity. To overcome this limitation vectors, e.g. pCC1FOS, have been constructed that contain the additional replication origin, oriV, which permits copy-number to be induced transiently when propagated in a suitable host strain, e.g. EPI300, that supplies the cognate trans -replication protein TrfA. Previously, we used EL350 and EPI300 sequentially to recombineer oriV -equipped fosmid genomic clones and, subsequently, to induce copy-number of the resulting recombinant clone. To eliminate these intervening DNA isolation and transformation steps we retrofitted EL350 with a P BAD-driven trfA gene generating strain MW005 that supports, independently, both recombineering and copy-number induction.  相似文献   

15.
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ~200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.  相似文献   

16.
The aim of the present study was to explore the usability of Arabidopsis cruciferin C (CRUC) promoter in the Cre/loxP self-excision strategy with the minimal rate of an ectopic expression of the cre recombinase. For this, a plant transformation vector containing the gus reporter gene driven by the light-sensitive Lhca3.St1 instead of double dCaMV 35S promoter and one pair loxP sites flanking the cre and the nptII genes was prepared. Agrobacterium-mediated transformations of three economically important oilseed rape (Brassica napus L.) cultivars Campino, Hunter and Topas as well as tobacco (Nicotiana tabacum L.) as a reference system were performed. The integration of the T-DNA into genome of all Brassica cultivars was accompanied by DNA deletions/rearrangements on the both T-DNA ends. The disruption of the Cre/loxP recombination system in oilseed rape was observed. On the contrary, no such events were detected in tobacco. The applied strategy did restrict an ectopic CRUC activity to some extent and a set of transgenic tobacco T0 plants without premature excision event was obtained. Our data showed that a choice of the promoter can limit undesired activation of the Cre/loxP cassette.  相似文献   

17.
18.
Site-specific recombination systems, such as Cre-lox from bacteriophage P1, have become very important tools for plant genome engineering. In many cases a constitutive promoter is used to express the recombinase gene. However, for certain research and commercial applications constitutive Cre-mediated recombination may not be desirable. We have evaluated the potential of seven different germline promoter:cre fusions to remove a stably integrated lox cassette through Cre-mediated recombination in Arabidopsis thaliana. We monitored the functionality of each promoter in the germline of primary transformants by analyzing the presence of the recombined lox cassette in T2 progeny. The selected germline promoters are involved in different developmental cues, including early stem cell identity (CLAVATA3), flower meristem identity (LEAFY, APETALA1), floral organ identity (AGAMOUS), and meiosis (SOLO DANCERS, DMC1, SWITCH1). For five out of these seven promoters we were able to show that efficient Cre-mediated recombination does, indeed, occur and that the recombination takes place at some point during germline development. Furthermore, a recombination efficiency of 100% is obtained when Cre-expression is regulated by the CLAVATA3 promoter. In addition, with these promoters, we observe much less variation in recombination frequency than previously reported for the 35S promoter. For these reasons, we believe that germline-specific Cre-lox recombination provides an additional tool to the site-specific recombination technology in plants.  相似文献   

19.
When hybrid λ-P1 phages containing either loxP or loxR sites are crossed under conditions where only the P1 lox site-specific recombination system is active, most of the crossovers occur in a region of the DNA that contains the lox sites. The remainder of the lox-mediated crossovers (4% in a P × P cross and 32% in a P × R cross) occur close to, but outside of, either loxP or loxR. These latter crossovers are not detected if one of the partners in the cross carries a deletion of loxP. We explain these results by an exchange of strands at lox sites and a migration of the resulting cross-strand junction outside of lox.  相似文献   

20.
The engineering of Corynebacterium glutamicum is important for enhanced production of biochemicals. To construct an optimal C. glutamicum genome, a precise site-directed gene integration method was developed by using a pair of mutant lox sites, one a right element (RE) mutant lox site and the other a left element (LE) mutant lox site. Two DNA fragments, 5.7 and 10.2 kb-long, were successfully integrated into the genome. The recombination efficiency of this system compared to that obtained by single crossover by homologous recombination was 2 orders of magnitude higher. Moreover, the integrated DNA remained stably maintained on removal of Cre recombinase. The Cre/mutant lox system thus represents a potentially attractive tool for integration of foreign DNA in the course of the engineering of C. glutamicum traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号