首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
An integrated molecular linkage map of olive (Olea europaea L.) was constructed based on randomly amplified polymorphic DNA (RAPD), sequence characterized amplified region (SCAR), and microsatellite markers using the pseudo-testcross strategy. A mapping population of 104 individuals was generated from an F1 full-sib family of a cross between 'Frantoio' and 'Kalamata'. The hybridity of the mapping population was confirmed by genetic similarity and nonmetric multidimensional scaling. Twenty-three linkage groups were mapped for 'Kalamata', covering 759 cM of the genome with 89 loci and an average distance between loci of 11.5 cM. Twenty-seven linkage groups were mapped for 'Frantoio', covering 798 cM of the genome with 92 loci and an average distance between loci of 12.3 cM. For the integrated map, 15 linkage groups covered 879 cM of the genome with 101 loci and an average distance between loci of 10.2 cM. The size of the genomic DNA was estimated to be around 3000 cM. A sequence characterized amplified region marker linked to olive peacock disease resistance was mapped to linkage group 2 of the integrated map. These maps will be the starting point for studies on the structure, evolution, and function of the olive genome. When the mapping progeny pass through their juvenile phase and assume their adult characters, mapping morphological markers and identification of quantitative trait loci for adaptive traits will be the primary targets.  相似文献   

2.
A genetic map for the model legume Lotus japonicus has been developed. The F(2) mapping population was established from an interspecific cross between L. japonicus and L. filicaulis. A high level of DNA polymorphism between these parents was the source of markers for linkage analysis and the map is based on a framework of amplified fragment length polymorphism (AFLP) markers. Additional markers were generated by restriction fragment length polymorphism (RFLP) and sequence-specific PCR. A total of 524 AFLP markers, 3 RAPD markers, 39 gene-specific markers, 33 microsatellite markers, and six recessive symbiotic mutant loci were mapped. This genetic map consists of six linkage groups corresponding to the six chromosomes in L. japonicus. Fluorescent in situ hybridization (FISH) with selected markers aligned the linkage groups to chromosomes as described in the accompanying article by Pedrosa et al. 2002(this issue). The length of the linkage map is 367 cM and the average marker distance is 0.6 cM. Distorted segregation of markers was found in certain sections of the map and linkage group I could be assembled only by combining colormapping and cytogenetics (FISH). A fast method to position genetic loci employing three AFLP primer combinations yielding 89 markers was developed and evaluated by mapping three symbiotic loci, Ljsym1, Ljsym5, and Ljhar1-3.  相似文献   

3.
The linkage maps of Dendrobium species based on RAPD and SRAP markers   总被引:3,自引:0,他引:3  
Dendrobium plants are used commonly as tonic herbs and health food in many Asian countries,especially in China.Here we report the genetic map construction of two Dendrobium species with a double pseudo-testcross strategy using random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) markers.A F1 mapping population of 90 individuals was developed from a cross between D.officinale and D.hercoglossum.A total of 307 markers,including 209 RAPD and 98 SRAP,were identified and used for genetic linkage group (LG) analysis.The D.officinale linkage map consisted of 11 major linkage groups and 3 doublets,which covered 629.4 cM by a total of 62 markers with an average locus distance of 11.2 cM between two adjacent markers.The D.hercoglossum linkage map contained 112 markers mapped on 15 major and 4 minor linkage groups,spanning a total length of 1,304.6 cM with an average distance of 11.6 cM between two adjacent markers.The maps constructed in this study covered 92.7% and 82.7% of the D.hercoglossum and D.officinale genomes respectively,providing an important basis for the mapping of horticultural and medicinal traits and for the application of marker-assisted selection in Dendrobium breeding program.  相似文献   

4.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

5.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

6.
D. Grattapaglia  R. Sederoff 《Genetics》1994,137(4):1121-1137
We have used a ``two-way pseudo-testcross' mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F(1) progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, θ = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support >/=1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.  相似文献   

7.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.  相似文献   

8.
RAPD和SSR两种标记构建的中国对虾遗传连锁图谱   总被引:10,自引:0,他引:10  
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeuschinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11·28cM,图谱共覆盖1173cM,覆盖率为59·36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12·05cM,图谱共覆盖1144·6cM,覆盖率为62·01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

9.
Fifty-four RAPD (random amplified polymorphic DNA) markers and 6 SSRs (simple sequence repeats) were included in a molecular marker map with 120 RFLPs (restriction fragment length polymorphisms) and 7 isozyme genes previously constructed using the offspring of a cross between the almond (Prunus amygdalus) cultivars 'Ferragnès' and 'Tuono'. Only highly reproducible RAPDs segregating 1:1 were used. To identify these markers, a total of 325 primers were screened, from which 41 produced RAPDs useful for mapping. Polymorphism was detected in six of the eight Prunus SSRs (simple sequence repeats) studied, thus enabling these to be mapped. All markers were placed on the 8 linkage groups previously identified. The number of new markers included in the map of 'Ferragnès' was 33 for a total of 126, and 30 in the map of 'Tuono' for a total of 99. The sizes of the maps of 'Ferragnès' (415 cM) and 'Tuono' (416 cM) were similar, representing a 5% increase over the maps constructed solely with isozymes and RFLPs. The estimated total size of the almond map was of 457 cM. Some markers were placed in zones with low density of markers and others in the extreme of linkage groups. The use of RAPD markers to complete genetic maps constructed with transferable markers is discussed.  相似文献   

10.
We have used a one-way pseudo-testcross mapping strategy in combination with different types of PCR-based markers (RAPD, AFLP, SAMPL) to construct a first linkage map for variegated chicory (Cichorium intybus L. var. silvestre Biskoff, n=9), a self-incompatible vegetable species. The success of such a strategy depends on the presence of sufficiently high levels of heterozygosity in the individual plant which is being mapped and on the informativeness of the marker system that is used. A total of 371 markers, comprising 16 RAPDs, 72 SAMPLs and 283 AFLPs, were scored in 46 F1 individuals obtained from an interspecific cross between a C. intybus outbred individual and a C. endivia inbred line. Grouping of the markers at a LOD score of 4.0 resulted in 13 linkage groups covering 1330 cM. A framework map covering 1201.4 cM was assembled by using all markers that could be ordered with a LOD greater than 2.0. We estimate the total genome size of chicory to be ca. 1405 cM, thus considerably smaller than that estimated for lettuce (1950 cM). The usefulness of the different marker systems that were applied is analysed in terms of level of heterozygosity and marker index, i.e. number of different genetic loci that may be simultaneously analysed per experiment. Out of the 371 markers, 50 of them showed segregation distortion which is discussed in terms of the hybrid origin of the variegated chicory.  相似文献   

11.
A mapping population of F(8)derived recombinant inbred lines (RILs) was established from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin (Lupinus angustifolius L.). The parents together with the 89 RILs were subjected to DNA fingerprinting using microsatellite-anchored fragment length polymorphism (MFLP) to rapidly generate DNA markers to construct a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 7 or more markers. The total map length was 1543 cM, with an average distance of 3.4 cM between adjacent markers. This is the first published map for a lupin species. The map can be exploited for marker assisted selection for genetic improvement in lupin breeding programs.  相似文献   

12.
The primary genetic linkage maps of Fenneropenaeus chinensis (Osbeck) were constructed by using the “two-way pseudo-testcross” strategy with RAPD and SSR markers. Parents and F1 progeny were used as segregating populations. Sixty-one RAPD primers and 20 pairs of SSR primers were screened from 460 RAPD primers and 44 pairs of SSR primers. These primers were used to analyze the parents and 82 progeny of the mapping family. About 146 primers (128 RAPDs, 18 microsatellites) in the female and 127 primers (109 RAPDs, 18 microsatellites) in the male were segregating markers. The female linkage map included eight linkage groups, nine triplets and 14 doublets, spanning 1,173 cM with the average marker density of 11.28 cM, and the observed coverage was 59.36%. The male linkage map included 10 linkage groups, 12 triplets and seven doublets, spanning 1,144.6 cM with the average marker density of 12.05 cM, and the observed coverage was 62.01%. The construction of the F. chinensis genetic linkage maps here opened a new prospect for marker-assisted selection program, comparative genomics and quantitative trait loci (QTL) gene location and cloning.  相似文献   

13.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

14.
RFLP-based genetic map of rye, developed previously using a cross of lines DS2×RXL10 (F2 generation), was extended with 69 RAPD and 12 isozyme markers. The actual map contains 282 markers dispersed on all seven chromosomes and spans a distance of 1,140 cM. The efficiency of mapping RAPD markers was close to ten loci per 100-screened arbitrary primers. A strong selection of polymorphic, intensive and reproducible fragments was necessary to reveal individual marker loci that could be assigned to rye chromosomes. Newly mapped markers cover a substantial part of the rye genome and constitute a valuable tool suitable for map saturation, marker-aided selection and phenetic studies. A specific nomenclature for the RAPD loci mapped on individual rye chromosomes, which could be helpful in managing of accumulating data, is proposed. Received: 8 May 2000 / Accepted: 17 October 2000  相似文献   

15.
Gene mapping for a Cupressus species is presented for the first time. Two linkage maps for the Mediterranean cypress (Cupressus sempervirens) varieties, C. sempervirens var. horizontalis and C. sempervirens var. pyramidalis, were constructed following the pseudo-testcross mapping strategy and employing RAPD, SCAR and morphological markers. A total of 427 loci (425 RAPDs, two SCARs) representing parents and F(1) progeny were screened for polymorphism with 32 random decamer and two SCAR primers. A morphological marker defined as "crown form" was also included. Of 274 polymorphic loci, the 188 that presented Mendelian inheritance formed the mapping dataset. Of these loci, 30% were mapped into seven linkage groups for the horizontalis (maternal) and four linkage groups for the pyramidalis (paternal) map. The putative "crown form" locus was included in a linkage group of both maps. The horizontalis and the pyramidalis maps covered 160.1 and 144.5 cM, respectively, while genome length was estimated to be 1696 cM for the former variety and 1373 cM for the latter. The four RAPD markers most tightly linked to crown form were cloned and converted to SCARs. Each of the cloned RAPD markers yielded two to three different sequences behaving as co-migrating fragments. Two SCAR markers, SC-D05(432) and SC-D09(667), produced amplified bands of the expected sizes and maintained linkage with the appropriate phenotype, but to a lesser extent compared to their original RAPD counterparts. These linkage maps represent a first step towards the localization of QTLs and genes controlling crown form and other polygenic traits in cypress.  相似文献   

16.
大豆遗传图谱的构建和分析   总被引:47,自引:2,他引:45  
利用大豆栽培品种科丰1号和南农1138-2杂交得到的重组近交系NJRIKY,通过RFLP,SSR,RAPD和AFLP4种分子标记的遗传连锁分析,构建了包含24个连锁群,由792个遗传标记组成的大豆较高密度连锁图谱,该图谱覆盖2320.7cM,平均图距2.9cM,SSR标记的多态性较高,在基因组中的位置相对稳定,可以作为锚定标记,有利于连锁群的归并和不同图谱的比较整合;而AFLP标记对于增加图谱密度效率较高,但其容易出现聚集现象,从而造成连锁群上有很大的空隙(gap),另外,在连锁群中有21.7%的分子标记出现偏分离,该图谱为基因定位,比较基因组学和重要农艺性状的QTL定位等研究打下了基础。  相似文献   

17.
古瑜  赵前程  孙德岭  宋文芹 《遗传》2007,29(6):751-757
利用AFLP和NBS profiling技术, 以花椰菜自交系“AD白花”与高代自交不亲和系“C-8”杂交得到的F1代自交产生的F2代分离群体为材料, 构建了第一个花椰菜遗传连锁图谱。该图谱由234个AFLP标记和21个NBS标记构成了9个连锁群, 总图距为668.4 cM, 标记间平均距离为2.9 cM。每个连锁群包含的位点数从12到47个, 相邻两标记之间的距离范围是0~14.9 cM。NBS标记分布在8个连锁群中, 这些标记大部分聚在一起。本研究为今后的基因定位及重要农艺性状的分析提供框架图。此外, 研究NBS profiling 方法在花椰菜中的稳定性和有效性以及NBS-LRR类RGA在花椰菜基因组中的分布和特点。  相似文献   

18.
Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers   总被引:15,自引:1,他引:14       下载免费PDF全文
G. J. Hunt  R. E. Page-Jr 《Genetics》1995,139(3):1371-1382
A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkage groups. We estimate the total genome size to be ~3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species.  相似文献   

19.
白桦RAPD遗传连锁图谱的构建   总被引:4,自引:1,他引:3  
以80个来自欧洲白桦(Betula pendula Roth)×中国白桦(Betula platyphylla Suk)的F1个体为作图群体。利用2个亲本和10个F1个体对1,200个10 bp的随机寡核苷酸引物进行筛选, 确定了208个多态性引物。利用RAPD标记, 按照拟测交的作图策略, 分别构建了欧洲白桦和中国白桦的分子标记连锁图谱。对2个亲本和80个F1代作图群体进行随机扩增, 共获得了364个多态性位点。χ2检验结果表明有307个位点符合1∶1分离的拟测交分离, 26个位点符合3∶1分离, 31个位点属偏分离位点。拟测交位点中有145个位点来自欧洲白桦, 有162个位点来自中国白桦。利用2点连锁分析, 欧洲白桦中的145个连锁标记构成了14个不同的连锁群(4个以上标记), 6个三连体和6个连锁对, 37个为非连锁位点, 连锁标记覆盖的总图距为955.6 cM (centimorgan), 平均图距14.9 cM。而来自中国白桦的162个标记构成了15个连锁群(4个以上标记), 4个三连体和6个连锁对, 21个为非连锁位点, 连锁标记覆盖的总图距为1,545.8 cM (centimorgan), 平均图距15.2 cM。该图谱的建立为进一步将两个图谱整合为一个高密度图谱及重要基因的定位奠定了基础。  相似文献   

20.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号