首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3- to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 and CYP79B3 were both highly induced. Specifically, the indole glucosinolate N-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutant coi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducing mpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.  相似文献   

2.
Cruciferous plants produce a wide variety of glucosinolates as a protection against herbivores and pathogens. However, very little is known about the importance of individual glucosinolates in plant defense and the regulation of their production in response to herbivory. When Myzus persicae (green peach aphid) feeds on Arabidopsis aliphatic glucosinolates pass through the aphid gut intact, but indole glucosinolates are mostly degraded. Although aphid feeding causes an overall decrease in Arabidopsis glucosinolate content, the production of 4-methoxyindol-3-ylmethylglucosinolate is induced. This altered glucosinolate profile is not a systemic plant response, but is limited to the area in which aphids are feeding. Aphid feeding on detached leaves causes a similar change in the glucosinolate profile, demonstrating that glucosinolate transport is not required for the observed changes. Salicylate-mediated signaling has been implicated in other plant responses to aphid feeding. However, analysis of eds5, pad4, npr1 and NahG transgenic Arabidopsis, which are compromised in this pathway, demonstrated that aphid-induced changes in the indole glucosinolate profile were unaffected. The addition of purified indol-3-ylmethylglucosinolate to the petioles of cyp79B2 cyp79B3 mutant leaves, which do not produce indole glucosinolates, showed that this glucosinolate serves as a precursor for the aphid-induced synthesis of 4-methoxyindol-3-ylmethylglucosinolate. In artificial diets, 4-methoxyindol-3-ylmethylglucosinolate is a significantly greater aphid deterrent in the absence of myrosinase than its metabolic precursor indol-3-ylmethylglucosinolate. Together, these results demonstrate that, in response to aphid feeding, Arabidopsis plants convert one indole glucosinolate to another that provides a greater defensive benefit.  相似文献   

3.
4.
5.
Four Chinese Brassica napus lines, generated through a breeding programme to identify Sclerotinia sclerotiorum tolerant and susceptible lines, and three European varieties were analysed for changes in glucosinolates (qualitative and quantitative), and general host reactions, after localised inoculation with a UK S. sclerotiorum isolate. Plants at the fifth leaf stage were either singly inoculated (third leaf) or were inoculated once (third leaf) and then challenged a second time (seventh leaf) 7 days after the first inoculation. The results showed very distinct reactions in the different lines and cultivars to the fungus, both locally and systemically. Of the European lines B. napus cv. Bienvenu showed good resistance (small lesions and less host damage) both 3 and 7 days post-inoculation. Capricorn was the most susceptible followed by Cobra; the third leaves of these cultivars were showing strong chlorotic and necrotic reactions by day 3 and lesions were well developed. By day 7 the third leaves of Capricorn were completely rotten whilst Cobra still had a little healthy tissue. Inoculation of the four Chinese lines showed that two had moderate resistance (014 and 020 — slightly less resistant than Bienvenu) and two were very susceptible (016 and 024 — similar reactions to Capricorn and Cobra), based on lesion size and host tissue damage. Glucosinolate induction in line 014 was good both locally and systemically, with clear local and systemic induction of indolylglucosinolates and 2-phenylethylglucosinolate both 3 and 7 days post-inoculation. Line 020 did not show no particular increases in glucosinolates after inoculation either locally or systemically. In line 016 there was a small local increase and a large systemic reduction in total glucosinolates. Inoculation of line 024 caused no major local changes in glucosinolates and again a big reduction in glucosinolates systemically. The dual inoculation system, with lines 014 and 016, produced comparable results, with line 014 showing good local and systemic induction of glucosinolates (after the first inoculation) and a further local and systemic induction after the second inoculation. This induction in pre-inoculated line 014 plants was associated with a reduction in lesion size of the second inoculum. Line 016 responded poorly both locally and systemically, and there were no real decrease in the lesion size of the second inoculum. It appears that in line 014 glucosinolate induction may be an important part of resistance, whereas in line 020 there are clearly other non-glucosinolate factors involved. The poor local and systemic induction of glucosinolates in lines 016 and 024, and subsequent susceptibility, implies that glucosinolate induction may be an important marker of resistance to S. sclerotiorum in oilseed rape.  相似文献   

6.
The role of glucosinolates in aboveground plant–insect and plant–pathogen interactions has been studied widely in both natural and managed ecosystems. Fewer studies have considered interactions between root glucosinolates and soil organisms. Similarly, data comparing local and systemic changes in glucosinolate levels after root- and shoot-induction are scarce. An analysis of 74 studies on constitutive root and shoot glucosinolates of 29 plant species showed that overall, roots have higher concentrations and a greater diversity of glucosinolates than shoots. Roots have significantly higher levels of the aromatic 2-phenylethyl glucosinolate, possibly related to the greater effectiveness and toxicity of its hydrolysis products in soil. In shoots, the most dominant indole glucosinolate is indol-3-ylglucosinolate, whereas roots are dominated by its methoxyderivatives. Indole glucosinolates were the most responsive after jasmonate or salicylate induction, but increases after jasmonate induction were most pronounced in the shoot. In general, root glucosinolate levels did not change as strongly as shoot levels. We postulate that roots may rely more on high constitutive levels of glucosinolates, due to the higher and constant pathogen pressure in soil communities. The differences in root and shoot glucosinolate patterns are further discussed in relation to the molecular regulation of glucosinolate biosynthesis, the within-tissue distribution of glucosinolates in the roots, and the use of glucosinolate-containing crops for biofumigation. Comparative studies of tissue-specific biosynthesis and regulation in relation to the biological interactions in aboveground and belowground environments are needed to advance investigations of the evolution and further utilization of glucosinolates in natural and managed ecosystems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Glucosinolates are a group of defense-related secondary metabolites found in Arabidopsis and other cruciferous plants. Levels of leaf glucosinolates are regulated during plant development and increase in response to mechanical damage or insect feeding. The Arabidopsis TU8 mutant has a developmentally altered leaf glucosinolate profile: aliphatic glucosinolate levels drop off more rapidly, consistent with the early senescence of the mutant, and the levels of two indole glucosinolates are uniformly low. In TU8 seeds, four long-chain aliphatic glucosinolates have significantly increased levels, whereas the indolyl-3-methyl glucosinolate level is significantly reduced relative to wild type. Genetic mapping and DNA sequencing identified the TU8 mutation as tfl2-6, a new allele of TERMINAL FLOWER2 (TFL2), the only Arabidopsis homolog of animal HETEROCHROMATIN PROTEIN1 (HP1). TU8 (tfl2-6) has other previously identified tfl2 phenotypes, including an early transition to flowering, altered meristem structure, and stunted leaves. Analysis of two additional alleles, tfl2-1 and tfl2-2, showed glucosinolate profiles similar to those of line TU8 (tfl2-6).  相似文献   

8.
9.
Composition and content of glucosinolates in developing Arabidopsis thaliana   总被引:14,自引:0,他引:14  
Petersen BL  Chen S  Hansen CH  Olsen CE  Halkier BA 《Planta》2002,214(4):562-571
The glucosinolate composition and content in various tissues of Arabidopsis thaliana (L.) Heynh. ecotype Columbia during development from seeds to bolting plants were determined in detail by high-performance liquid chromatography. Comparison of the glucosinolate profiles of leaves, roots and stems from mature plants with those of green siliques and mature seeds indicated that a majority of the seed glucosinolates were synthesized de novo in the silique. A comparison of the glucosinolate profile of mature seeds with that of cotyledons indicated that a major part of seed glucosinolates was retained in the cotyledons. Turnover of glucosinolates was studied by germination of seeds containing radiolabelled p-hydroxybenzylglucosinolate (p-OHBG). Approximately 70% of the content of [14C]p-OHBG in the seeds was detected in seedlings at the cotyledon stage and [14C]p-OHBG was barely detectable in young plants with rosettes of six to eight leaves. The turn-over of p-OHBG was found to coincide with the expression of the glucosinolate-degrading enzyme myrosinase, which was detectable at very low levels in seedlings at the cotyledon stage, but which dramatically increased in leaves from plants at later developmental stages. This indicates that there is a continuous turnover of glucosinolates during development and not only upon tissue disruption.  相似文献   

10.
Mechanical wounding of the petioles of six laboratory-grown rapeseed ( Brassica napus ) cultivars induced physiological changes in the plant, markedly affecting the levels of individual glucosinolates. Greatest increases were observed for the indole glucosinolates, glucobrassicin and neoglucobrassicin. Such changes were usually associated with large decreases in the levels of aliphatic glucosinolates. The total glucosinolate content of the wounded plant was thus a reflection of these two opposing trends and wounding produced a greater relative indole glucosinolate content in this total figure. Thus increasing wounding was associated with an increase in indole glucosinolates and a decrease in aliphatic compounds.
Infestation of field- and laboratory-grown rapeseed with cabbage stem flea beetle ( Psylliodes chrysocephala ) produced similar effects, which were observed in various parts of the plant. Differences in response between field- and laboratory-grown infested plants are attributed to the different physiological ages of the harvested material.
Laboratory-grown kale and mustards also showed wound-induced glucosinolate changes. The kale, cv. Fribor, produced elevated levels of both indoles and aliphatics after wounding. Total glucosinolate content in the mustards, which, unlike rape and kale, normally contain only traces of indole glucosinolates in the unstressed state, was increased following wounding. This was, however, not associated with elevated levels of indole glucosinolates, but with accumulation of aliphatic ( Brassica nigra, B. juncea ) and aromatic ( Sinapis alba ) glucosinolates. The significance of these findings is discussed.  相似文献   

11.
Under defined laboratory conditions it was shown that two glucosinolate-containing plant species, Tropaeolum majus and Carica papaya , were colonized by arbuscular mycorrhizal (AM) fungi, whereas it was not possible to detect AM fungal structures in other glucosinolate-containing plants (including several Brassicaceae). Benzylglucosinolate was present in all of the T. majus cultivars and in C. papaya it was the major glucosinolate. 2-Phenylethylglucosinolate was found in most of the non-host plants tested. Its absence in the AM host plants indicates a possible role for the isothiocyanate produced from its myrosinase-catalysed hydrolysis as a general AM inhibitory factor in non-host plants. The results suggest that some of the indole glucosinolates might also be involved in preventing AM formation in some of the species. In all plants tested, both AM hosts and non-hosts, the glucosinolate pattern was altered after inoculation with one of three different AM fungi ( Glomus mosseae , Glomus intraradices and Gigaspora rosea ), indicating signals between AM fungi and plants even before root colonization. The glucosinolate induction was not specifically dependent on the AM fungus. A time-course study in T. majus showed that glucosinolate induction was present during all stages of mycorrhizal colonization.  相似文献   

12.
13.
14.
The cleavage of glucosinolates by myrosinase to produce toxic breakdown products is a characteristic insect defense of cruciferous plants. Although green peach aphids ( Myzus persicae ) are able to avoid most contact with myrosinase when feeding from the phloem of Arabidopsis thaliana , indole glucosinolates are nevertheless degraded during passage through the insects. A defensive role for indole glucosinolates is suggested by the observation that atr1D mutant plants, which overproduce indole glucosinolates, are more resistant to M. persicae , whereas cyp79B2 cyp79B3 double mutants, which lack indole glucosinolates, succumb to M. persicae more rapidly. Indole glucosinolate breakdown products, including conjugates formed with ascorbate, glutathione and amino acids, are elevated in the honeydew of M. persicae feeding from atr1D mutant plants, but are absent when the aphids are feeding on cyp79B2 cyp79B3 double mutants. M. persicae feeding from wild-type plants and myrosinase-deficient tgg1 tgg2 double mutants excrete a similar profile of indole glucosinolate-derived metabolites, indicating that the breakdown is independent of these foliar myrosinases. Artificial diet experiments show that the reaction of indole-3-carbinol, a breakdown product of indol-3-ylmethylglucosinolate, with ascorbate, glutathione and cysteine produces diindolylmethylcysteines and other conjugates that have antifeedant effects on M. persicae . Therefore, the post-ingestive breakdown of indole glucosinolates provides a defense against herbivores such as aphids that can avoid glucosinolate activation by plant myrosinases.  相似文献   

15.
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.  相似文献   

16.
The glucosinolate content of various organs of the model plant Arabidopsis thaliana (L.) Heynh., Columbia (Col-0) ecotype, was analyzed at different stages during its life cycle. Significant differences were noted among organs in both glucosinolate concentration and composition. Dormant and germinating seeds had the highest concentration (2.5-3.3% by dry weight), followed by inflorescences, siliques (fruits), leaves and roots. While aliphatic glucosinolates predominated in most organs, indole glucosinolates made up nearly half of the total composition in roots and late-stage rosette leaves. Seeds had a very distinctive glucosinolate composition. They possessed much higher concentrations of several types of aliphatic glucosinolates than other organs, including methylthioalkyl and, hydroxyalkyl glucosinolates and compounds with benzoate esters than other organs. From a developmental perspective, older leaves had lower glucosinolate concentrations than younger leaves, but this was not due to decreasing concentrations in individual leaves with age (glucosinolate concentration was stable during leaf expansion). Rather, leaves initiated earlier in development simply had much lower rates of glucosinolate accumulation per dry weight gain throughout their lifetimes. During seed germination and leaf senescence, there were significant declines in glucosinolate concentration. The physiological and ecological significance of these findings is briefly discussed.  相似文献   

17.
Glucosinolates are biologically active secondary metabolites of the Brassicaceae and related plant families that influence plant/insect interactions. Specific glucosinolates can act as feeding deterrents or stimulants, depending upon the insect species. Hence, natural selection might favor the presence of diverse glucosinolate profiles within a given species. We determined quantitative and qualitative variation in glucosinolates in the leaves and seeds of 39 Arabidopsis ecotypes. We identified 34 different glucosinolates, of which the majority are chain-elongated compounds derived from methionine. Polymorphism at only five loci was sufficient to generate 14 qualitatitvely different leaf glucosinolate profiles. Thus, there appears to be a modular genetic system regulating glucosinolate profiles in Arabidopsis. This system allows the rapid generation of new glucosinolate combinations in response to changing herbivory or other selective pressures. In addition to the qualitative variation in glucosinolate profiles, we found a nearly 20-fold difference in the quantity of total aliphatic glucosinolates and were able to identify a single locus that controls nearly three-quarters of this variation.  相似文献   

18.
本试验研究了不同浓度的萘乙(NAA)并结合单次喷施(NAA-1)和两次喷施(NAA.2),对小白菜生长和硫代葡萄糖苷(简称硫苷)含量的影响。结果表明,与对照相比,不同的NAA处理浓度均显著增加了小白菜的鲜重。同时,NAA处理对总硫苷和单个硫苷含量产生了显著的影响。NAA-1处理时,总脂肪族硫苷、2.苯乙基硫苷和总硫苷在20mg·L-1时到达最大值;而总吲哚族硫苷在50mg·L-1时含量到达最高。NAA.2处理时,大部分单个硫苷和总硫苷在10mg·L-1处理即达到最大值。可见,在较低浓度两次喷施NAA试验中对大部分硫苷的诱导效果高于单次喷施NAA;但随着NAA处理浓度的提高,单次喷施NAA对硫苷的诱导效果较好。其中,吲哚-3-甲基硫苷含量在NAA-1处理,喷施50mg·L-1时显著高于其他处理:而2-苯乙基硫苷在单次和两次喷施NAA时,分别在20mg·L-1和10mg·L-达到了最大值。  相似文献   

19.
Indole glucosinolate breakdown and its biological effects   总被引:1,自引:0,他引:1  
Most species in the Brassicaceae produce one or more indole glucosinolates. In addition to the parent indol-3-ylmethylglucosinolate (IMG), other commonly encountered indole glucosinolates are 1-methoxyIMG, 4-hydroxyIMG, and 4-methoxyIMG. Upon tissue disruption, enzymatic hydrolysis of IMG produces an unstable aglucone, which reacts rapidly to form indole-3-acetonitrile and indol-3-ylmethyl isothiocyanate. The isothiocyanate, in turn, can react with water, ascorbate, glutathione, amino acids, and other plant metabolites to produce a variety of physiologically active indole compounds. Myrosinase-initiated breakdown of the substituted indole glucosinolates proceeds in a similar manner to that of IMG. Induction of indole glucosinolate production in response to biotic stress, experiments with mutant plants, and artificial diet assays suggest a significant role for indole glucosinolates in plant defense. However, some crucifer-feeding specialist herbivores recognize indole glucosinolates and their breakdown products as oviposition and/or feeding stimulants. In mammalian diets, IMG can have both beneficial and deleterious effects. Most IMG breakdown products induce the synthesis of phase 1 detoxifying enzymes, which may in some cases prevent carcinogenesis, but in other cases promote carcinogenesis. Recent advances in indole glucosinolate research have been fueled by their occurrence in the well-studied model plant Arabidopsis thaliana. Knowledge gained from genetic and biochemical experiments with A. thaliana can be applied to gain new insight into the ecological and nutritional properties of indole glucosinolates in other plant species.  相似文献   

20.
The role of glucosinolates in the oviposition behaviour of the cabbage root fly,Delia radicum (L.) (Diptera, Anthomyiidae) was investigated using egg counts and electrophysiological recordings from tarsal contact chemoreceptors. The glucosinolates present both inside and on the surface of cauliflower leaves were determined. The total amounts obtained with the two methods differed by a factor of 100. The extract of the leaf surface contained about 60 μg per g leaf extracted (gle), the total leaf extract 7.5 mg per gle. The glucosinolate patterns of the two extracts were qualitatively similar, but the ratios of the content of individual glucosinolates showed considerable differences. The D sensilla on segment 3 and 4 of the tarsus ofD. radicum females were shown to contain a sensitive receptor cell for glucosinolates. In contrast, the receptor cells of the D sensilla of the other segments did not respond in a dose dependent way to these compounds. The glucosinolate receptors were found to be especially sensitive to glucobrassicin, gluconasturtiin and glucobrassicanapin with thresholds of about 10−8 M to 10−9 M. Large differences (up to two orders of magnitude) were observed among the different glucosinolates. A significant correlation was found between the behavioural discrimination index and the electrophysiological results. But no obvious correlation existed between the chemical nature of the glucosinolate side chain (e.g. indole, aromatic and aliphatic groups), and their stimulatory activity. However, a significant correlation was found between the overall length of the side chain and the biological activity. Although the flies discriminated clearly between model leaves with and without glucosinolates, a clear dose response curve was only obtained for the indole glucosinolate glucobrassicin. Since the most stimulatory fraction of the surface extract contained no glucosinolates, it was concluded that other compounds, in addition to glucosinolates, do play an important role for the stimulation of oviposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号