首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   9篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有68条查询结果,搜索用时 326 毫秒
1.
Introduced rats (Rattus spp.) can affect island vegetation structure and ecosystem functioning, both directly and indirectly (through the reduction of seabird populations). The extent to which structure and function of islands where rats have been eradicated will converge on uninvaded islands remains unclear. We compared three groups of islands in New Zealand: islands never invaded by rats, islands with rats, and islands on which rats have been controlled. Differences between island groups in soil and leaf chemistry and leaf production were largely explained by burrow densities. Community structure of woody seedlings differed by rat history and burrow density. Plots on islands with high seabird densities had the most non-native plant species. Since most impacts of rats were mediated through seabird density, the removal of rats without seabird recolonization is unlikely to result in a reversal of these processes. Even if seabirds return, a novel plant community may emerge.  相似文献   
2.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
3.
Durrett R  Foo J  Leder K  Mayberry J  Michor F 《Genetics》2011,188(2):461-477
With rare exceptions, human tumors arise from single cells that have accumulated the necessary number and types of heritable alterations. Each such cell leads to dysregulated growth and eventually the formation of a tumor. Despite their monoclonal origin, at the time of diagnosis most tumors show a striking amount of intratumor heterogeneity in all measurable phenotypes; such heterogeneity has implications for diagnosis, treatment efficacy, and the identification of drug targets. An understanding of the extent and evolution of intratumor heterogeneity is therefore of direct clinical importance. In this article, we investigate the evolutionary dynamics of heterogeneity arising during exponential expansion of a tumor cell population, in which heritable alterations confer random fitness changes to cells. We obtain analytical estimates for the extent of heterogeneity and quantify the effects of system parameters on this tumor trait. Our work contributes to a mathematical understanding of intratumor heterogeneity and is also applicable to organisms like bacteria, agricultural pests, and other microbes.  相似文献   
4.
Plant triacylglycerols as feedstocks for the production of biofuels   总被引:11,自引:5,他引:6  
Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.  相似文献   
5.
We use methods of maximum likelihood estimation to fit several microsatellite mutation models to the observed length distribution of dinucletoide repeats in the Drosophila and human genomes. All simple models are rejected by this procedure. Two new models, one with quadratic and another with piecewise linear slippage rates, have the best fits and agree with recent experimental studies by predicting that long microsatellites have a bias toward contractions.  相似文献   
6.
Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions can result from a balance between polymerase slippage and point mutations. Here, we introduce an elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores point mutations. We develop a detailed mathematical theory for these models that exhibits properties of microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to analyze the successes and failures of the genetic distances (delta(mu))(2) and D(SW) when used to date four divergences: African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans, and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two examples, as does the fact that these genetic distances have large stochastic variance. However, we find that these two features are not enough to explain the problems of dating the human-chimpanzee split. One possible explanation of this phenomenon is that long microsatellites have a mutational bias that favors contractions over expansions.  相似文献   
7.
Glucosinolates are a group of defense-related secondary metabolites found in Arabidopsis and other cruciferous plants. Levels of leaf glucosinolates are regulated during plant development and increase in response to mechanical damage or insect feeding. The Arabidopsis TU8 mutant has a developmentally altered leaf glucosinolate profile: aliphatic glucosinolate levels drop off more rapidly, consistent with the early senescence of the mutant, and the levels of two indole glucosinolates are uniformly low. In TU8 seeds, four long-chain aliphatic glucosinolates have significantly increased levels, whereas the indolyl-3-methyl glucosinolate level is significantly reduced relative to wild type. Genetic mapping and DNA sequencing identified the TU8 mutation as tfl2-6, a new allele of TERMINAL FLOWER2 (TFL2), the only Arabidopsis homolog of animal HETEROCHROMATIN PROTEIN1 (HP1). TU8 (tfl2-6) has other previously identified tfl2 phenotypes, including an early transition to flowering, altered meristem structure, and stunted leaves. Analysis of two additional alleles, tfl2-1 and tfl2-2, showed glucosinolate profiles similar to those of line TU8 (tfl2-6).  相似文献   
8.
All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.  相似文献   
9.
Predators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of seabirds by introduced rats reduced forest soil fertility by disrupting sea-to-land nutrient transport by seabirds, and that fertility reduction in turn led to wide-ranging cascading effects on belowground organisms and the ecosystem processes they drive. Our data further suggest that some effects on the belowground food web were attributable to changes in aboveground plant nutrients and biomass, which were themselves related to reduced soil disturbance and fertility on invaded islands. These results demonstrate that, by disrupting across-ecosystem nutrient subsidies, predators can indirectly induce strong shifts in both above- and below-ground biota via multiple pathways, and in doing so, act as major ecosystem drivers.  相似文献   
10.
Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号