首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   34篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2016年   13篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   9篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   11篇
  1998年   14篇
  1997年   6篇
  1996年   9篇
  1995年   10篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1984年   2篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1969年   5篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1951年   1篇
  1949年   1篇
  1934年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
1.

Background  

Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis.  相似文献   
2.
The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution MRI-based delayed enhancement subtraction maps may be applied for clear depiction of tumor and non-tumoral tissues in patients with primary brain tumors and patients with brain metastases.  相似文献   
3.
J M Last 《CMAJ》1980,123(9):834-838
  相似文献   
4.
5.
6.
Identifying metaphorical language-use (e.g., sweet child) is one of the challenges facing natural language processing. This paper describes three novel algorithms for automatic metaphor identification. The algorithms are variations of the same core algorithm. We evaluate the algorithms on two corpora of Reuters and the New York Times articles. The paper presents the most comprehensive study of metaphor identification in terms of scope of metaphorical phrases and annotated corpora size. Algorithms’ performance in identifying linguistic phrases as metaphorical or literal has been compared to human judgment. Overall, the algorithms outperform the state-of-the-art algorithm with 71% precision and 27% averaged improvement in prediction over the base-rate of metaphors in the corpus.  相似文献   
7.
The complex multi-gear, multi-species tropical fisheries in developing countries are poorly understood and characterising the landings from these fisheries is often impossible using conventional approaches. A rapid assessment method for characterising landings at fish markets, using an index of abundance and estimated weight within taxonomic groups, is described. This approach was developed for contexts where there are no detailed data collection protocols, and where consistent data collection across a wide range of fisheries types and geographic areas is required, regardless of the size of the site and scale of the landings. This methodology, which was demonstrated at seven fish landing sites/fish markets in southern Indonesia between July 2008 and January 2011, provides a rapid assessment of the abundance and diversity in the wild catch over a wide variety of taxonomic groups. The approach has wider application for species-rich fisheries in developing countries where there is an urgent need for better data collection protocols, monitoring future changes in market demographics, and evaluating health of fisheries.  相似文献   
8.
The harbour ragworm, Nereis (Hediste) diversicolor is a common intertidal marine polychaete that lives in burrows from which it has to partially emerge in order to forage. In doing so, it is exposed to a variety of predators. One way in which predation risk can be minimised is through chemical detection from within the relative safety of the burrows. Using CCTV and motion capture software, we show that H. diversicolor is able to detect chemical cues associated with the presence of juvenile flounder (Platichthys flesus). Number of emergences, emergence duration and distance from burrow entrance are all significantly reduced during exposure to flounder conditioned seawater and flounder mucous spiked seawater above a threshold with no evidence of behavioural habituation. Mucous from bottom-dwelling juvenile plaice (Pleuronectes platessa) and pelagic adult herring (Clupea harengus) elicit similar responses, suggesting that the behavioural reactions are species independent. The data implies that H. diversicolor must have well developed chemosensory mechanisms for predator detection and is consequently able to effectively minimize risk.  相似文献   
9.
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants.  相似文献   
10.
Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.PSII is a multiprotein complex in plants with 31 identified polypeptides (Wegener et al., 2011; Pagliano et al., 2013). It is associated with an extrinsic trimeric light-harvesting complex (LHC), forming the PSII-LHCII supercomplex. The PSII complex performs a remarkable biochemical reaction, the oxidation of water using light energy from the sun, which profoundly contributes to the overall biomass accumulation in the biosphere (Barber et al., 2004). Consequently, the stability and functional integrity of the PSII-LHCII supercomplex is crucially important for photosynthetic function. The energy of a photon, either absorbed directly by PSII or indirectly via energy transfer from adjacent antenna chlorophyll (Chl) molecules, excites the PSII reaction center P680. The excited state, P680*, can transfer an electron to pheophytin, producing the most powerful oxidant known in biology, P680+, which can remove electrons from water. Excessive input of excitation energy into PSII saturates the electron transfer system and causes either acceptor or donor site limitation in the complex. This results in increased production of reactive oxygen species (ROS): singlet oxygen at the PSII donor side and superoxide at the acceptor side (Munné-Bosch et al., 2013). Several protective mechanisms have been documented that decrease the production of singlet oxygen at the PSII donor side in photosynthetic eukaryotes. Notably, reducing energy transfer from LHC to PSII via nonphotochemical quenching (NPQ) is a key avoidance mechanism (Ruban and Murchie, 2012).Despite years of intensive study of PSII structure and function, new proteins that are associated with the PSII complex continue to be discovered, including an increasing number involved in the stability and organization of PSII-LHCII supercomplexes (García-Cerdán et al., 2011; Lu et al., 2011a; Wegener et al., 2011). Two complementary approaches (Merchant et al., 2007; Lu et al., 2008, 2011b; Ajjawi et al., 2010) that utilize phylogenomics (GreenCut) and large-scale phenotypic mutant screening (Chloroplast 2010 Project; http://www.plastid.msu.edu/) were employed by our groups to discover novel plant proteins with roles in photosynthesis. GreenCut identifies proteins found only in photosynthetic organisms, and it is likely that many of them are involved in biochemical processes associated with the structure, assembly, or function of the photosynthetic apparatus and the chloroplast that houses it (Merchant et al., 2007; Karpowicz et al., 2011). The Chloroplast 2010 Project was a large-scale reverse-genetic mutant screen in which thousands of homozygous Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion lines were analyzed for defects in the rise and decay kinetics of Chl fluorescence (Lu et al., 2008, 2011a, 2011b; Ajjawi et al., 2010).The GreenCut and Chloroplast 2010 approaches both identified the Arabidopsis At1g71500 locus as encoding a protein of unknown function with potential relevance to photosynthesis. In this work, we demonstrate that plant lines carrying three independent mutations at this locus display severe light-induced photoinhibition due to a less stable supramolecular organization of PSII. Biochemical analyses revealed that this protein is associated with PSII complexes, and since the last described PSII protein was called PHOTOSYSTEM II PROTEIN32 (PSB32), we named the gene PSB33. The nuclear genome-encoded PSB33 is predicted to have a chloroplast transit peptide and a transmembrane domain. The biochemical analyses presented below indicate that PSB33 is required for the proper interaction and stability of PSII-LHCII supercomplexes and, in turn, in regulating photosynthesis in response to fluctuating light levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号