首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Y  Wang B  Cui P  Li L  Xue JY  Yu J  Qiu YL 《PloS one》2012,7(4):e35168
Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.  相似文献   

2.
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.  相似文献   

4.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

5.
红花变豆菜(Sanicula rubriflora F. Schmidt)是有药用价值的植物,全株干燥后与其他药用同属植物易混淆,种间关系存在争议,通过高通量测序技术对红花变豆菜叶绿体基因组测序,利用生物信息学方法对测序数据进行拼接、注释,首次报道红花变豆菜叶绿体基因组结构及特点,利用叶绿体基因组数据,提供种间分类新证据,并且分析相关类群的进化关系。S. rubriflora叶绿体基因组序列的长度为155 721 bp,其中包括一个85 981 bp的大单拷贝区(large single copy,LSC)和一个17 060 bp的小单拷贝区(small single-copy region,SSC),它们被两个26 340 bp的反向重复区(inverted repeat sequence,IRs)隔开。红花变豆菜叶绿体基因组GC含量为38.20%,包含129个基因,其中84个蛋白质编码基因,37个tRNA基因和8个rRNA基因。红花变豆菜叶绿体基因组结构具有高度保守性,其中编码基因共有51 907个密码子,最多编码5 095个亮氨酸,最少编码689个色氨酸,简单重复序列分析共发现32个位点,大多数是单碱基重复的A/T类型。叶绿体基因组聚类结果支持天胡荽亚科(Hydrocotyloideae)是伞形科(Umbelliferae)内比较原始的类群;变豆菜亚科(Saniculoideae)和芹亚科(Apioideae)为姊妹类群,是伞形科较进化的类群;变豆菜属植物是一个相对自然的类群;红花变豆菜与黄花变豆菜(S. flavovirens)为近缘姊妹种,但是两者形态和地理分布差异较大。该研究结果为变豆菜属属下种间鉴定及其种间演化奠定基础。  相似文献   

6.
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.  相似文献   

7.
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.  相似文献   

8.
广西火桐(Firmiana kwangsiensis)和丹霞梧桐(F. danxiaensis)是我国南方特有物种, 其分布范围狭窄, 种群数量少。为了解其叶绿体基因组结构及系统发生关系, 本文通过高通量测序方法获得广西火桐和丹霞梧桐的浅层基因组数据, 通过生物信息学方法对叶绿体全基因组进行组装, 并对其结构特征进行分析。结果表明: 广西火桐和丹霞梧桐的叶绿体基因组大小分别为160,836 bp和161,253 bp, 具有典型被子植物叶绿体基因组环状四分体结构, 包含长度分别为89,700 bp、90,142 bp的大单拷贝区(large single copy, LSC), 长度分别为19,970 bp、20,067 bp的小单拷贝区(small single copy, SSC)及长度分别为25,583 bp、25,522 bp的2个反向重复序列区(inverted repeat sequence, IR)。两个物种的叶绿体基因组共注释得到131个基因, 包括86个蛋白编码基因、37个tRNA基因和8个rRNA基因。广西火桐的叶绿体基因组中共检测出26个正向重复序列、2个反向重复序列、21个回文重复序列、21个串联重复序列和98个简单重复序列; 丹霞梧桐叶绿体基因组中共检测出23个正向重复序列、5个反向重复序列、21个回文重复序列、30个串联重复序列和107个简单重复序列。系统发生分析结果表明5种梧桐属(Firmiana)植物构成两个强烈支持的分支(支持率100%), 一个分支为广西火桐、美丽火桐(F. pulcherrima)和火桐(F. colorata), 其中广西火桐与美丽火桐构成姐妹群; 另一分支是互为姐妹群的丹霞梧桐和云南梧桐(F. major)。综上所述, 广西火桐和丹霞梧桐的叶绿体基因组结构、基因排列及重复序列具有较高的相似性, 系统进化树将5种梧桐属物种分为两个分支, 其中广西火桐和美丽火桐最近; 而丹霞梧桐与云南梧桐关系最近。本研究鉴定的SSR位点可为梧桐属物种系统发生、进化关系的研究提供遗传信息。  相似文献   

9.
The complete nucleotide sequence of the duckweed (Lemna minor) chloroplast genome (cpDNA) was determined. The cpDNA is a circular molecule of 165,955 bp containing a pair of 31,223-bp inverted repeat regions (IRs), which are separated by small and large single-copy regions of 89,906 and 13,603 bp, respectively. The entire gene pool and relative positions of 112 genes (78 protein-encoding genes, 30 tRNA genes, and 4 rRNA genes) are almost identical to those of Amborella trichopoda cpDNA; the minor difference is the absence of infA and ycf15 genes in the duckweed cpDNA. The inverted repeat is expanded to include ycf1 and rps15 genes; this pattern is unique and does not occur in any other sequenced cpDNA of land plants. As in basal angiosperms and eudicots, but not in other monocots, the borders between IRs and a large single-copy region are located upstream of rps19 and downstream of trnH, so that trnH is not included in IRs. The model of rearrangements of the chloroplast genome during the evolution of monocots is proposed as the result of the comparison of cpDNA structures in duckweed and other monocots. The phylogenetic analyses of 61 protein-coding genes from 38 plastid genome sequences provided strong support for the monophyly of monocots and position of Lemna as the next diverging lineage of monocots after Acorales. Our analyses also provided support for Amborella as a sister to all other angiosperms, but in the bayesian phylogeny inference based on the first two codon positions Amborella united with Nymphaeales.  相似文献   

10.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

11.
利用生物信息学方法比较壳斗科6个属14个物种的叶绿体基因组间差异,以近缘物种榛为外类群构建系统进化树,揭示壳斗科叶绿体基因组的结构特征及变异规律。结果显示,14种壳斗科植物的叶绿体基因组均为双链环状分子结构,大小在160 kB左右,差异较小,最大仅差1 366 bp;基因顺序基本一致,而基因数量有所差异,infA、petG、rpl22、ycf1、ycf15等多个基因在部分物种中发生丢失;主要有32个蛋白编码基因长度发生变异,其原因是内含子的丢失、内含子或者编码区的长度改变,华南锥基因长度变异较大;4个IR边界相对保守,但锥栗、Castanea pumila、华南锥3个物种由于边界扩张导致rps19基因部分序列进入到IR区;以榛为外类群构建的系统发育树,各进化支支持率较高,分辨率较好。研究结果表明,叶绿体基因组可以用于分析关系较近与进化较快物种的系统发生问题,为系统发育和进化研究提供依据。  相似文献   

12.
The complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae, Liliales) was mapped using polymerase chain reaction and the Sanger method. The circular double-stranded DNA was a typical quadripartite structure consisting of two inverted repeated regions (27,397 bp), a small single copy region (18,205 bp), and a large single-copy region (81,646 bp), with a total length of 154,645 bp. The genome consisted of 137 coding genes, including 91 protein-coding genes, 38 distinct tRNA, and 8 rRNA genes. The ycf15 and ycf68 genes had several internal stop codons interpreted as pseudogenes. The inverted repeat (IR) region expanded to part of the rps3 gene in the junction between large single-copy and IRA regions in C. japonica. We designed 785 primers, of which 481 were used to map the entire chloroplast genome of C. japonica. Primers were compared with the complete chloroplast sequence of Smilax china (Smilacaceae) to identify primers that could be used for other Liliales members and whole chloroplast genome sequencing. Of the primers used for C. japonica, 398 could be used with other smaller species within the order.  相似文献   

13.
T Huotari  H Korpelainen 《Gene》2012,508(1):96-105
Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700bp in length, and has a typical structure with large (LSC 86,194bp) and small (SSC 17,810bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been sequenced and, therefore, this study provides valuable information about the course of evolution in divergence of monocot lineages.  相似文献   

14.

Background

The ginseng family (Araliaceae) includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships.

Methodology/Principal Findings

We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333–156,459 bp in length including a pair of inverted repeats (25,551–26,108 bp) separated by the large single-copy (86,028–86,566 bp) and small single-copy (18,021–19,117 bp) regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae.

Conclusion

The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.  相似文献   

15.
16.
In order to understand more fully chloroplast genetic systems, we have determined the complete nucleotide sequence (155, 844 bp) of tobacco (Nicotiana tabacum var. Bright Yellow 4) chloroplast DNA. It contains two copies of an identical 25,339 bp inverted repeat, which are separated by 86, 684 bp and 18,482 bp single-copy regions. The genes for 4 different rRNAs, 30 different tRNAs, 44 different proteins and 9 other predicted protein-coding genes have been located. Fifteen different genes contain introns.Twenty-two genes for components of the photosynthetic apparatus have so far been identified. Most of the genes (except the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) code for thylakoid membrane proteins. Twenty of them are located in the large single-copy region and one gene for a 9-kd polypeptide of photosystem I is located in the small single-copy region. The gene for the 32-kd protein of photosystem II as well as the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase have strong promoters and are transcribed monocistronically while the other genes are transcribed polycistronically. We have found that the predicted amino acid sequences of six DNA sequences resemble those of components of the respiratory-chain NADH dehydrogenase from human mitochondria. As these six sequences are highly transcribed in tobacco chloroplasts, they are probably genes for components of a chloroplast NADH dehydrogenase. These observations suggest the existence of a respiratory-chain in the chloroplast of higher plants.  相似文献   

17.
Blumea balsamifera (L.) DC., a medicinal plant with high economic value in the Asteraceae family, is widely distributed in China and Southeast Asia. However, studies on the population structure or phylogenetic relationships with other related species are rare owing to the lack of genome information. In this study, through high-throughput sequencing, we found that the chloroplast genome of B. balsamifera was 151,170 bp in length, with a pair of inverted repeat regions (IRa and IRb) comprising 24,982 bp, a large single-copy (LSC) region comprising 82,740 bp, and a small single-copy (SSC) region comprising 18,466 bp. A total of 130 genes were identified in the chloroplast genome of B. balsamifera, including 85 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes; furthermore, sequence analysis identified 53 simple sequence repeats. Whole chloroplast genome comparison indicated that the inverted regions (IR) were more conserved than large single-copy and SSC regions. Phylogenetic analysis showed that B. balsamifera is closely related to Pluchea indica. Conclusively, the chloroplast genome of B. balsamifera was helpful for species identification and analysis of the genetic diversity and evolution in the genus Blumea and family Asteraceae.  相似文献   

18.
One major lineage of green plants, the Chlorophyta, is represented by the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The Prasinophyceae occupies the most basal position in the Chlorophyta, but the branching order of the Ulvophyceae, Trebouxiophyceae, and Chlorophyceae remains unresolved. The chloroplast genome sequences currently available for representatives of three chlorophyte classes have revealed that this genome is highly plastic, with Chlamydomonas (Chlorophyceae) and Chlorella (Trebouxiophyceae) showing fewer ancestral features than Nephroselmis (Prasinophyceae). We report the 195,867-bp chloroplast DNA (cpDNA) sequence of Pseudendoclonium akinetum (Ulvophyceae), a member of the class that has not been previously examined for detailed cpDNA analysis. This genome shares common evolutionary trends with its Chlorella and Chlamydomonas homologs. The gene content, number of ancestral gene clusters, and abundance of short dispersed repeats in Pseudendoclonium cpDNA are intermediate between those observed for Chlorella and Chlamydomonas cpDNAs. Although Pseudendoclonium cpDNA features a large inverted repeat, its quadripartite structure is unusual in displaying an rRNA operon transcribed toward the large single-copy (LSC) region and a small single-copy region containing 14 genes that are normally found in the LSC region. Twenty-seven group I introns lie in nine genes and fall within four subgroups (IA1, IA2, IA3, and IB); 19 encode putative homing endonucleases, and 7 have homologs at identical insertion sites in other chlorophyte or streptophyte organelle genomes. The high similarity observed among the 14 IA1 and 7 IA2 introns and their encoded endonucleases suggests that many introns arose from intragenomic proliferation of a few founding introns in the lineage leading to Pseudendoclonium. Interestingly, one intron (in atpA) and some of the dispersed repeats also reside in Pseudendoclonium mitochondria, providing strong evidence for interorganellar lateral transfer of these genetic elements. Phylogenetic analyses of 58 cpDNA-encoded proteins and genes support the hypothesis that the Ulvophyceae is sister to the Trebouxiophyceae but cannot eliminate the hypothesis that the Ulvophyceae is sister to the Chlorophyceae. We favor the latter hypothesis because it is strongly supported by phylogenetic analyses of gene order data and by independent structural evidence based on shared gene losses and rearrangement break points within ancestrally conserved gene clusters.  相似文献   

19.
It is generally believed that bryophytes are the earliest land plants. However, the phylogenetic relationships among bryophytes, including mosses, liverworts and hornworts, are not clearly resolved. To obtain more information on the earliest land plants, we determined the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae. The circular double-stranded DNA of 161 162 bp is the largest genome ever reported among land plant chloroplasts. It contains 76 protein, 32 tRNA and 4 rRNA genes and 10 open reading frames (ORFs), which are identical with the chloroplast genome of the other green plants analyzed. The major difference is a larger inverted repeat than that of the liverwort Marchantia, Anthoceros contains an excess of ndhB and rps7 genes and the 3′ exon of rps12. The genes matK and rps15, commonly found in the chloroplast genomes of land plants, are pseudogenes. The intron of rrn23 is the first finding in the known chloroplast genomes of land plants. A striking feature of the hornwort chloroplast is that more than half of the protein-coding genes have nonsense codons, which are converted into sense codons by RNA editing. Maximum-likelihood (ML) analysis, based on 11 518 amino acid sites of 52 proteins encoded in the chloroplast genomes of the green plants, placed liverworts as the sister to all other land plants.  相似文献   

20.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号