首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The post-integration behavior of insect gene vectors will determine the types of applications for which they can be used. Transposon mutagenesis, enhancer trapping, and the use of transposable elements as genetic drive systems in insects requires transposable elements with high rates of remobilization in the presence of transposase. We investigated the post-integration behavior of the Mos1 mariner element in transgenic Aedes aegypti by examining both germ-line and somatic transpositions of a non-autonomous element in the presence of Mos1 transposase. Somatic transpositions were occasionally detected while germ-line transposition was only rarely observed. Only a single germ-line transposition event was recovered after screening 14,000 progeny. The observed patterns of transposition suggest that Mos1 movement takes place between the S phase and anaphase. The data reported here indicate that Mos1 will be a useful vector in Ae. aegypti for applications requiring a very high degree of vector stability but will have limited use in the construction of genetic drive, enhancer trap, or transposon tagging systems in this species.  相似文献   

2.
Derivatives of the mariner transposable element, Mos1, from Drosophila mauritiana, can integrate into the germ-line of the yellow fever mosquito, Aedes aegypti. Previously, the transposase required to mobilize Mos1 was provided in trans by a helper plasmid expressing the enzyme under the control of the D. psuedoobscura heat-shock protein 82 promoter. Here we tested whether purified recombinant Mos1 transposase could increase the recovery of Ae. aegypti transformants. Mos1 transposase was injected into white-eyed, kh(w)/kh(w), Ae. aegypti embryos with a Mos1 donor plasmid containing a copy of the wild-type allele of the D. melanogaster cinnabar gene. Transformed mosquitoes were recognized by partial restoration of eye color in the G(1) animals and confirmed by Southern analyses of genomic DNA. At Mos1 transposase concentrations approaching 100 nM, the rate of germ-line transformants arising from independent insertions in G(0) animals was elevated 2-fold compared to that seen in experiments with helper plasmids. Furthermore, the recovery of total G(1) transformants was increased 7.5-fold over the frequency seen with co-injected helper plasmid. Southern blot analyses and gene amplification experiments confirmed the integration of the transposons into the mosquito genome, although not all integrations were of the expected cut-and-paste type transposition. The increased frequency of germ-line integrations obtained with purified transposase will facilitate the generation of Mos1 transgenic mosquitoes and the application of transgenic approaches to the biology of this important vector of multiple pathogens.  相似文献   

3.
利用转基因技术来探索新的蚊媒疾病防治方法,将登革病毒前膜蛋白基因prM重组入以转座子piggyBac因子为基础的载体,构建了昆虫转基因载体pB[PUBnls-EGFP-prM],在辅助质粒的作用下共同转染白纹伊蚊Aedes albopictus C6/36细胞。PCR和Southern blot证明构建的转基因载体可以将EGFP-prM基因整合入蚊虫基因组中。验证了转座子piggyBac因子、启动子polyubiquitin可以在白纹伊蚊中发挥功能,为进一步构建不传播登革病毒的转基因白纹伊蚊奠定了基础。  相似文献   

4.
The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti.  相似文献   

5.
Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector. Christina Scali and Tony Nolan contributed equally to the work.  相似文献   

6.
The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.  相似文献   

7.
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.  相似文献   

8.
Identifying factors influencing transposable element activity is essential for understanding how these elements impact genomes and their evolution as well as for fully exploiting them as functional genomics tools and gene-therapy vectors. Using a genetics-based approach, the influence of genomic position on piggyBac mobility in Drosophila melanogaster was assessed while controlling for element structure, genetic background, and transposase concentration. The mobility of piggyBac elements varied over more than two orders of magnitude solely as a result of their locations within the genome. The influence of genomic position on element activities was independent of factors resulting in position-dependent transgene expression ("position effects"). Elements could be relocated to new genomic locations without altering their activity if ≥ 500 bp of genomic DNA originally flanking the element was also relocated. Local intrinsic factors within the neighboring DNA that determined the activity of piggyBac elements were portable not only within the genome but also when elements were moved to plasmids. The predicted bendability of the first 50 bp flanking the 5' and 3' termini of piggyBac elements could account for 60% of the variance in position-dependent activity observed among elements. These results are significant because positional influences on transposable element activities will impact patterns of accumulation of elements within genomes. Manipulating and controlling the local sequence context of piggyBac elements could be a powerful, novel way of optimizing gene vector activity.  相似文献   

9.
Germ-line transformation was achieved in the Caribbean fruit fly, Anastrepha suspensa, using a piggyBac vector marked with an enhanced green fluorescent protein gene regulated by the Drosophila melanogaster polyubiquitin promoter. Four transgenic G(0) lines were selected exhibiting unambiguous GFP expression. Southern hybridization indicated the presence of one to four integrations in each of the transgenic lines with two integrations verified as piggyBac-mediated by sequencing their insertion sites. Fluorescence was detectable throughout development, and in adults was most intense from the thoracic flight muscle. Although adult cuticle quenched fluorescence, GFP was routinely detectable in the thorax. A quantitative spectrofluorometric assay was developed for GFP fluorescence that indicated differing levels of fluorescence among the transgenic lines, suggesting some level of position effect variegation/suppression. These results are encouraging for the use of this marker system in insect species not amenable to mutation-based visible markers. Together with the piggyBac vector, a transformation system is presented that has the potential to be universally applicable in insect species.  相似文献   

10.
Use of the piggyBac transposon for germ-line transformation of insects   总被引:8,自引:0,他引:8  
Germ-line transformation of insects is now possible with four independent transposable element vector systems. Among these, the TTAA-insertion site specific transposon, piggyBac, discovered in Trichoplusia ni, is one of the most widely used. Transformations have been achieved in a wide variety of dipterans, lepidopterans, and a coleopteran, and for many species, piggyBac transposition was first tested by plasmid-based mobility assays in cell lines and embryos. All plasmid and genomic insertions are consistent with the duplication of a TTAA insertion site, and most germ-line integrations appear to be stable, though this is largely based on stable marker phenotypes. Of the vector systems presently in use for non-drosophilids, piggyBac is the only one not currently associated with a superfamily of transposable elements, though other elements exist that share its TTAA insertion site specificity. While functional piggyBac elements have only been isolated from T. ni, nearly identical elements have been discovered in a dipteran species, Bactrocera dorsalis, and closely related elements exist in another moth species, Spodoptera frugiperda. It appears that piggyBac has recently traversed insect orders by horizontal transmission, possibly mediated by a baculovirus or other viral system. This interspecies movement has important implications for the practical use of piggyBac to create transgenic insect strains for field release.  相似文献   

11.
D. A. Lidholm  A. R. Lohe    D. L. Hartl 《Genetics》1993,134(3):859-868
A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects.  相似文献   

12.
13.
Intertribal somatic hybridization between wild type Brassica juncea (L.) Czern. & Coss. and transgenic A. thaliana L. has been carried out. Genome of A. thaliana plants contained heterologous transposable element Spm/dSpm, reporter GUS gene, selective genes for kanamycin- (npt II) and phosphinothricin (bar) resistance. Hybrid nature of obtained plants was confirmed with their morphology, GUS hystochemical assay, PCR-RFLP, RAPD and isozyme analyses. It was determined that heterologous transposable element Spm/dSpm is able to function in hybrid plants. There was no complete elimination of A. thaliana genetic material in the hybrids and the transgenes were stably maintained.  相似文献   

14.
The piggyBac transposable element was tested for transposition activity in plasmid-based excision and inter-plasmid transposition assays to determine if this element would function in Anopheles gambiae cells and embryos. In the Mos55 cell line, precise excision of the piggyBac element was observed only in the presence of a helper plasmid. Excision occurred at a rate of 1 event per 1000 donor plasmids screened. Precise excision of the piggyBac element was also observed in injected An. gambiae embryos, but at a lower rate of 1 excision per 5000 donor plasmids. Transposition of the marked piggyBac element into a target plasmid occurred in An. gambiae cells at a rate of 1 transposition event per 24,000 donor plasmids. The piggyBac element transposed in a precise manner, with the TTAA target site being duplicated upon insertion, in 56% of transpositions observed, and only in the presence of the piggyBac helper. The remaining transpositions resulted in a deletion of target sequence, a novel observation for the phenomenon of piggyBac element insertion. 'Hot spots' for insertion into the target plasmid were observed, with 25 of 34 events involving one particular site. These results are the first demonstration of the precise mobility of piggyBac in this malaria vector and suggest that the lepidopteran piggyBac transposon is a candidate element for germline transformation of anopheline mosquitoes.  相似文献   

15.
Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.  相似文献   

16.
17.
Microinjection of the Minos transposon is the only reported technique for generating stable transgenic lines in the cosmopolitan ascidian, Ciona intestinalis. To establish a more amenable method for generating stable transgenic Ciona, we examined the possibility of using electroporation of DNA into eggs. From 0-44.4% of electroporated individuals transmitted transgenes to the next generation. The transgene was integrated into one chromosome and multiple copies of the transgene were inserted into one site of the chromosome, indicating that electroporation is an easy and powerful technique for achieving stable transgenesis in C. intestinalis. Together with possible inland culture of this ascidian, this technique will be useful for generating stable lines which have reporter gene expression in a specific tissue or organ and the generation of transposase-expressing stable transgenic (jump-starter) lines and mutator lines which contain a lot of Minos transposons in an insertion position.  相似文献   

18.
To express human insulin-like growth factor-I (hIGF-I) in transformed Bombyx mori cultured cells and silk glands, the transgenic vector pigA3GFP-hIGF-ie-neo was constructed with a neomycin resistance gene driven by the baculovirus ie-1 promoter, and with the hIGF-I gene under the control of the silkworm sericin promoter Ser-1. The stably transformed BmN cells expressing hIGF-I were selected by using the antibiotic G418 at a final concentration of 700—800 μg/mL after the BmN cells were transfected with the piggyBac vector and the helper plasmid. The specific band of hIGF-I was detected in the transformed cells by Western blot. The expression level of hIGF-I, determined by ELISA, was about 7800 pg in 5×105 cells. Analysis of the chromosomal insertion sites by inverse PCR showed that exogenous DNA could be inserted into the cell genome randomly or at TTAA target sequence specifically for piggyBac element transposition. The transgenic vector pigA3GFP-hIGF-ie-neo was transferred into the eggs using sperm-mediated gene transfer. Finally, two transgenic silkworms were obtained after screening for the neo and gfp genes and verified by PCR and dot hybridization. The expression level of hIGF-I determined by ELISA was about 2440 pg/g of silk gland of the transgenic silkworms of the G1 generation.  相似文献   

19.
The purpose of this study was to explore alternatives to insect-derived transposable elements as insect gene vectors with the intention of improving existing insect transgenesis methods. The mobility properties of the bacterial transposon, Tn5, were tested in mosquitoes using a transient transposable element mobility assay and by attempting to create transgenic insects. Tn5 synaptic complexes were assembled in vitro in the absence of Mg(2+) and co-injected with a target plasmid into developing yellow fever mosquito, Aedes aegypti, embryos. Target plasmids recovered from embryos a day later were screened for the presence of Tn5. Recombinants (transposition events) were found at a frequency of 1.2 x 10(-3). Some transposition events did not appear to be associated with canonical 9 bp direct duplications at the site of insertion and also were associated with either deletions or rearrangements. A Tn5 element containing the brain-specific transgene, 3 x P3DsRed, was assembled into synaptic complexes in vitro and injected into pre-blastoderm embryos of Ae. aegypti. Of the approximately 900 embryos surviving injection and developing into adults, two produced transgenic progeny. Both transgenic events involved the co-integrations of approximately five elements resulting in nested and tandem arrayed Tn5::3 x P3DsRed elements. This study extends the known host range of Tn5 to insects and makes available to insect biologists and others another eukaryotic genome-manipulation tool. The hyperactivity of synaptic complexes may be responsible for the unusual clustering of elements and managing this aspect of the element's behavior will be important in future applications of this technology to insects.  相似文献   

20.
目的 建立表达PiggyBac转座酶转基因小鼠模型,为研究PiggyBac转座子介导基因修饰在小鼠中的应用提供工具.方法 利用Cytomegalovirus( CMV)启动子驱动PiggyBac转座酶基因的表达,经显微注射法建立C57BL/6J表达PiggyBac转座酶的转基因小鼠.PCR鉴定转基因小鼠的基因型,RT-PCR检测PiggyBac转座酶在小鼠生殖系睾丸中的表达情况.PiggyBac转座酶转基因小鼠活性的检测,是通过与转座子供体转基因小鼠杂交检测供体位置变化来确定的.结果 显微注射产生7只转基因小鼠并能传代,经RT-PCR筛选出一株在睾丸中相对高表达PiggyBac转座酶的转基因小鼠.随后与转座子供体转基因小鼠杂交,子代双阳小鼠与野生型小鼠杂交基因型分离,产生的子代转座子供体单阳性小鼠中具有转座子供体片段的转座反应.结论 成功建立了表达PiggyBac转座酶转基因小鼠动物模型,该模型为PiggyBac转座子技术在小鼠中的应用提供了有价值的工具动物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号