首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
在临床应用上,一种能够持续递送药物的微针(microneedle,MN)系统对于一些疫苗、激素类药物的递送具有重要价值。本文研究设计了一种基于壳聚糖的可控缓释型微针阵列(PVA/CS-MN),将微针贴片与药物相结合用于药物的可控长效缓释。重点研究了PVA/CS-MN的制备优化工艺,并对MN阵列外观形貌、力学性能、溶解与溶胀性能以及体外刺入性能进行了表征。实验结果表明,使用最优工艺制备的PVA/CS-MN具有良好的形貌以及力学性能,可以顺利在皮肤上打开微通道,并实现可控的溶解与溶胀功能。同时,体外透皮扩散实验表明,以抗坏血酸(l-ascorbic acid)为模型药物制备的Vc-PVA/CS-MN在1 h内即释放了约57%的药物,随后12 h内缓慢释放了约66.7%的药物,7 d后最终释放了92%的药物。PVA/CS-MN具备可控的缓释特性以及优良的药物递送效率,为药物的持续透皮递送提供了一个新选择。  相似文献   

2.
复杂的肿瘤微环境导致抗肿瘤药物在肿瘤组织内递送效率低下,严重阻碍了药物对浅表肿瘤的治疗效果。生物相容透皮给药微针凭借较高的机械强度,刺穿皮肤角质层,将微针内的药物递送至浅表肿瘤组织内,提高生物利用度,改善静脉注射、口服给药的肝肾毒性等问题。本文介绍了生物相容透皮给药微针的设计及其在癌症化疗、光动力治疗、光热治疗、免疫治疗、基因治疗等领域的研究进展,对浅表肿瘤的微创、局部递药和精准、高效治疗具有重要指导意义。  相似文献   

3.
《生物工程学报》2022,38(9):3115-3120
微针透皮给药也称为微针经皮给药,既微创而无痛,又适用于纳米药物的送递并可实现智能缓释。微针装置的表面带有许多微米级别的细针、尖头或插钉,以阵列方式连接在基座或圆筒上,也可做成贴片形式。由于针孔微细,其痛感以及对皮肤的损伤也微乎其微。微针可反复插入并抽离皮肤,通过控制微针插入的深度及插入抽离的速度等参数,最终实现穿透角质层并在皮肤中形成可逆性微通道的目标。  相似文献   

4.
气泡微针作为一种新型的经皮递药技术,可以实现无痛精确给药,引起了研究者极大的关注。为了提高微针携带药物的利用率,本文提出了一种尖端载药气泡可溶性微针的制备方法。在微针成型过程中将气泡形成于针体内,药物集中到微针顶端。重点研究了气泡微针的制备优化工艺,并探究了起泡剂浓度、干燥温度、溶液黏度对气泡微针成型效果的影响,同时对其透皮效果进行了分析。实验结果表明,气泡微针成型工艺稳定,成型率在90%以上,同时将成型周期缩短至4 h左右。药物主要集中在微针针尖,高度在180μm,气泡的高度在250μm,且该微针阵列能够在小鼠皮肤上打出微通道,微针的针体能够在5min内迅速溶解。透皮扩散实验表明,气泡微针能够在1 min内迅速释放约48%的药物,5 min内共释放约91%的药物。微针阵列的气泡微结构能够阻碍药物向基底的扩散,有效提高了药物的利用率,为微针透皮给药的实际应用提供了一定技术依据。  相似文献   

5.
以靛玉红自微乳为囊心物,壳聚糖和海藻酸钠为囊材,采用复凝聚法制备壳聚糖-海藻酸钠靛玉红自乳化缓释微囊,通过正交实验和单因素考察确定壳聚糖-海藻酸钠靛玉红缓释微囊的最佳制备工艺。并以载药量、包封率为评价指标对其进行质量评价,同时以体外释放度评价其释药性能。壳聚糖-海藻酸钠靛玉红缓释微囊的最佳工艺是海藻酸钠的浓度为1.5%,靛玉红自微乳体积、海藻酸钠体积、壳聚糖质量三者比例为1∶1∶0.5,氯化钙浓度的最佳浓度为2.0%。采用该工艺制备的微囊载药量为0.0416%、包封率为79.2%,体外释放24 h累积释放率为(97.1±2.68)%。该微囊的释放符合Higuchi方程和一级释药模型,具有较好的缓释作用。  相似文献   

6.
目的:考察透明质酸复合微针的制备方法,并选择形态粘度适宜的高分子溶液制备透明质酸微针。方法:测定不同浓度透明质酸溶液的粘度,确定适宜制备微针的溶液浓度。利用聚乙烯醇反复冷冻-解冻的物理交联方法制备透明质酸复合微针,并加入其他辅料考察微针针形的优劣。利用高效液相色谱法考察优化后透明质酸微针的体外释放行为。结果:10%透明质酸溶液适宜用抽真空法制备微针,聚乙烯醇优化后的透明质酸微针柔韧性更佳,刚性减小,易于揭膜。微针针形良好,不易断裂。体外释放实验中显示有缓释效果,8小时内可释放40%的理论载药量。结论:通过加入聚乙烯醇等生物相容性良好的辅料制备透明质酸微针,既具有良好的物理性能,又有较好的释放行为,优于目前文献报道的纯透明质酸微针的性能,可继续优化处方,具有更进一步研究的价值。  相似文献   

7.
采用反相悬浮法制备交联壳聚糖微球,再与α-酮戊二酸反应生成Schiff碱,以NaBH_4还原制得改性壳聚糖微球.用FT-IR,SEM和XRD进行表征.并以来氟米特(LEF)为模型药物,考察了其缓释效果.结果显示:微球对药物的最大包封率为94%,载药量为62%,在缓释初期2 h内微球平均释放药量的16%,后期则呈现缓慢释放的趋势.本论文采用的微粒的药物承载量和释放速度既保证了药物的药效又降低了药物释放速率过快引起的对人体的不良反应.  相似文献   

8.
目的:制备新型癌症化疗制剂载阿霉素(Adriamycin)、聚乳酸-羟基乙酸共聚物(PLGA)纳米微球(ADM-PLGA-NP),研究其性质及体外释药特点。方法:以聚乳酸-羟基乙酸共聚物为包封材料,阿霉素为模型药物,采用复乳蒸发法制备ADM-PLGA-NP,扫描电镜观察微球形态,激光粒度分析仪检测粒径分布,紫外分光光度法计算载药率及包封率,体外药物释放实验考察微球对ADM的缓释作用。结果:ADM-PLGA-NP外观呈球形,平均粒径约(237±12.7)nm,载药量及包封率分别为(6.42±1.67)%和(53.82±8.34)%,药物在体外缓慢释放,5 d累积释放量达85%。结论:通过复乳蒸发法制备的ADM-PLGA-NP性质稳定,具有药物缓释性,有望成为一种新型的药物化疗载体。  相似文献   

9.
目的:利用毕赤酵母X33表达重组人表皮生长因子(rhEGF),纯化后以透明质酸(HA)为基质制备rhEGF-可溶性微针贴片,以期增强rhEGF的透皮能力。方法:合成EGF-His编码基因,PCR扩增后连入pPICZαA质粒构建重组表达载体,线性化pPICZαA-hEGF-His载体后电转化毕赤酵母X33感受态,涂布高浓度博来霉素YPD平板,筛选高表达单克隆菌株;甲醇诱导表达,以硫酸铵沉淀及镍填料亲和层析方法纯化获得rhEGF;利用微模板浇铸法以HA为基质制备rhEGF-可溶性微针贴片,通过猪皮穿刺实验验证此贴片的穿透性及可溶性。结果:构建了pPICZαA-hEGFHis表达载体,通过筛选获得高表达X33菌株,经两步纯化后的EGF-His蛋白纯度约为90%;制备了rhEGF-可溶性微针贴片,此贴片能够穿透猪皮。结论:利用毕赤酵母表达并纯化获得高纯度的EGF-His蛋白;将EGF-His蛋白与微针技术相结合制备的rhEGF-可溶性微针贴片具有较好的穿刺性和溶解性。  相似文献   

10.
目的:制备尼莫地平壳聚糖-海藻酸钠水凝胶释药系统.方法:采用复凝聚法制备尼莫地平水凝胶,通过高效液相分析方法考察其对尼莫地平的缓释作用;用转蓝法研究所制水凝胶的释放度,通过改变释放介质的pH值,考察该缓释系统对pH的敏感性.结果:尼莫地平水凝胶在人工胃液中几乎不溶解,累积释放度较低,4h仅释放47%,而人工肠液中具有较高的释放度,可达91%.结论:所制尼莫地平水凝胶具有明显的缓释作用和pH敏感特性.  相似文献   

11.
Transdermal drug delivery system (TDDS) may provide a more reliable method of drug delivery than oral delivery by avoiding gut absorption and first-pass metabolism, but needs a method for efficiently crossing the epidermal barrier. To enhance the delivery through the skin, we have developed a biocompatible, dissolvable microneedle array made from carboxymethyl cellulose (CMC). Using laser ablation for creating the mold greatly improved the efficiency and reduced the cost of microneedle fabrication. Mixing CMC with amylopectin (AP) enhanced the mechanical and tunable dissolution properties of the microneedle for controlled release of model compounds. Using the CMC microneedle array, we observed significant enhancement in the skin permeability of a fluorescent model compound, and also increase in the anti-oxidant activity of ascorbic acid after crossing the skin. Our dissolvable microneedle array provides a new and biocompatible method for delivery of drugs and cosmetic compounds through the skin.  相似文献   

12.
In dissolving microneedle (DMN)-mediated therapy, complete and rapid delivery of DMNs is critical for the desired efficacy. Traditional patch-based DMN delivery, however, may fail due to incomplete delivery from insufficient skin insertion or rapid separation of microneedles due to their strong bond to the backing film. Here, we introduce the Troy microneedle, which was created by cyclic contact and drying on the pillar (CCDP), and which enabled simultaneous complete and rapid delivery of DMN. This CCDP process could be flexibly repeated to achieve a specific desired drug dose in a DMN. We evaluated DMN separation using agarose gel, and the Troy microneedle achieved more complete and rapid separation than other, more deeply dipped DMN, primarily because of the Troy’s minimal junction between the DMN and pillar. When Troy microneedles were applied to pig cadaver skin, it took only 15 s for over 90% of encapsulated rhodamine B to be delivered, compared to 2 h with application of a traditional DMN patch. In vivo skin penetration studies demonstrated rapid DMN-separation of Troy microneedles still in solid form before dissolution. The Troy microneedle overcomes critical issues associated with the low penetration efficiency of flat patch-based DMN and provides an innovative route for DMN-mediated therapy, combining patient convenience with the desire drug efficacy.  相似文献   

13.
Microneedle (MN) technology has emerged as an effective drug delivery system, and it has tremendous potential as a patient friendly substitute for conventional methods for transdermal drug delivery (TDD). In this paper, we report on the preparation of lidocaine-loaded biodegradable microneedles, which are manufactured from fish scale-derived collagen. Lidocaine, a common tissue numbing anaesthetic, is loaded in these microneedles with an aim of delivering the drug with controlled skin permeation. Evaluation of lidocaine permeation in porcine skin has been successfully performed using Franz diffusion cell (FDC) which has shown that the drug permeation rate increases from 2.5 to 7.5% w/w after 36 h and pseudo steady state profile is observed from 5.0 to 10.0% w/w lidocaine-loaded microneedle. Swelling experiments have suggested that the microneedles have negligible swellability which implies that the patch would stick to the tissue when inserted. The experiments on MN dissolution have depicted that the lidocaine loaded in the patch is lower than the theoretical loading, which is expected as there can be losses of the drug during initial process manufacture.  相似文献   

14.
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.  相似文献   

15.
Microneedles have recently received much attention as a novel way for transdermal drug delivery. In this paper, a numerical simulation of the insertion process of the microneedle into human skin is reported using the finite element method. A multilayer skin model consisting of the stratum corneum, dermis and underlying hypodermis has been developed. The effective stress failure criterion has been coupled with the element deletion technique to predict the complete insertion process. The numerical results show a good agreement with the reported experimental data for the deformation and failure of the skin and the insertion force. The influences of the mechanical properties of the skin and the microneedle geometry (e.g. tip area, wall angle and wall thickness) on the insertion force are discussed. The numerical results are helpful for the optimum design of the microneedles for the transdermal drug delivery system.  相似文献   

16.
Microneedles have recently received much attention as a novel way for transdermal drug delivery. In this paper, a numerical simulation of the insertion process of the microneedle into human skin is reported using the finite element method. A multilayer skin model consisting of the stratum corneum, dermis and underlying hypodermis has been developed. The effective stress failure criterion has been coupled with the element deletion technique to predict the complete insertion process. The numerical results show a good agreement with the reported experimental data for the deformation and failure of the skin and the insertion force. The influences of the mechanical properties of the skin and the microneedle geometry (e.g. tip area, wall angle and wall thickness) on the insertion force are discussed. The numerical results are helpful for the optimum design of the microneedles for the transdermal drug delivery system.  相似文献   

17.
In recent years there has been much interest in development of multifunctional drug delivery systems. In this work, liposomes that contain doxorubicin (Dox), a potent anticancer drug, and graphene nanosheets (GNS) were prepared. The GNSs have excellent optical properties, such as photoluminescence which enables tracking of the liposomes, high absorption in ultra violet region of electromagnetic spectrum which can be exploited in photodynamic and photothermal therapy, and low toxicity to mammalian cells. Nanoliposomes were prepared using the thin film hydration method. Dox and GNSs were loaded to the liposomes during the hydration of the lipid film. Liposomes were characterized and the profile of in vitro drug release, cellular uptake, and cytotoxicity of the prepared liposomes on MCF-7 cells were determined. Despite the earlier reports, the liposomes have kept their spherical structures in the presence of GNSs. The cytotoxicity of liposomal Dox and GNSs were shown to be higher than the free forms of them. Novel nanoliposomes that contain GNSs have provided a multi-functional system with the potential of tracking, photodynamic and photothermal therapy. Further improvements of this versatile nanosystem would be promising for treatment of cancer.  相似文献   

18.

Aims

First; to develop rabeprazole (RP)-alginate core coated chitosan nanoparticles (NP) utilizing water in oil (W/O) nanoemulsion technique. Second; formulation of transdermal patches loaded RP-NP that avoid drug peroral acid sensitivity and first pass effect.

Main methods

The influence of six factors on RP-NP formulation was investigated using Plackett–Burman (PB) design. The studied factors were considered for their effect on particle size (Y1) and loading efficiency (Y2). Formulation optimum desirability was identified; a proposed formulation was prepared and characterized. In vitro permeation of the prepared NP compared with RP was studied. Transdermal patches loaded drug or RP-NP were prepared and characterized. Patches ex vivo permeation through rat skin was studied, and kinetic analysis and permeation mechanism were investigated.

Key Finding

Chitosan, oil phase and surfactant to oil ratios had significant effects on Y1, while Y2 was significantly affected by the same variables affecting Y1 and span80-tween80 ratio. Scanning electron microscope imaging illustrated sphericity of the NP. The optimized RP-NP exhibited sustained release pattern. The prepared patches showed a minimal patch to patch variable. Patches loaded RP-NP exhibited substantial skin permeability and controlled drug release, and were in favor of Fickian diffusion.

Significance

Transdermal patches loaded RP-NP is effective drug delivery and alternative to drug peroral route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号