首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
细胞自噬是真核细胞中广泛存在的一种自我保护机制,是细胞在应激情况下通过溶酶体或液泡高度保守的降解途径将细胞内异常蛋白和细胞器降解为生物大分子,重新被细胞利用的过程。适度的运动锻炼可以诱导机体多种组织细胞自噬的激活,增强机体的活力,延缓机体的衰老。运动训练可以刺激骨骼肌细胞自噬水平上调,延缓骨骼肌衰老;运动训练作为一种机械性刺激可以通过调节心肌细胞的自噬激活调控长寿命或错误折叠心肌蛋白和受损细胞器的代谢,延缓心肌衰老;此外,细胞自噬与糖尿病、肿瘤、脑血管疾病、衰老及心脏病等密切相关,运动训练可以预防动脉粥样硬化等血管类疾病的发生,也可以通过调控细胞自噬来预防与治疗心脏病、中风、糖尿病等疾病。现主要论述细胞自噬的涵义与分类,细胞自噬不同阶段的分子机制,以及运动训练通过调控细胞自噬相关基因调控骨骼肌、心肌和自噬相关疾病的分子机制,为使用科学的运动训练方式来提高机体功能及预防和治疗疾病提供了理论依据。  相似文献   

2.
间歇性低氧对心肌保护作用的研究   总被引:13,自引:0,他引:13  
陈铭  周兆年 《生命科学》1996,8(5):38-40
以往在低氧方面的工作着重于有关持续性低氧对机体的损伤及其机制的研究,目前间歇性低氧的研究成为低氧领域的一个热点,间歇性低氧就是给机体反复的中等程度的低氧刺激,使机体激过适应来提高对更高程度低氧的耐受性,间歇性低级研究的意义不仅在于了仍低氧环境下心脏的自我保护,同时为多种疾病提供治疗的基础.本文主要探讨间歇性低氧对心肌的保护作用、可能的机制以及它的应用价值.  相似文献   

3.
Li SH  Ma QS  Sa YP  Ma L  Yang YZ  Jin GE  Wen SD 《中国应用生理学杂志》2010,26(4):496-7, 509
目的:探讨针刺对急性低氧大鼠神经细胞损伤的保护作用。方法:测定对照组、低氧组、针刺组大鼠脑含水量,脑腺苷A1受体表达水平和观察神经细胞形态学。结果:与低氧组相比,针刺组脑含水量明显降低,神经元无明显的胞浆空染,核固缩;腺苷A1受体表达水平显著增多。结论:针刺具有保护急性低氧对大鼠神经细胞损伤的作用。  相似文献   

4.
随着我国逐渐步入老龄化社会,衰老及其相关疾病的预防和治疗措施已成为研究的热点问题。机体老化引起老年人常见的慢性疾病如阿尔茨海默病、心血管疾病、肌肉减少症和骨质疏松等是影响老年人身体健康和造成死亡的重要威胁。内质网和线粒体是机体蛋白质合成和能量供应的主要细胞器,对于细胞内稳态调节起主导作用,在机体老化过程中细胞内的动态平衡被打破,从而加剧各器官老化,并且伴随着衰老相关疾病发生。而运动作为一种有效的非药物干预手段,对于延缓衰老预防衰老相关疾病的发生起到保护作用。本文从内质网应激、线粒体自噬两个方面入手,综述了衰老相关疾病阿尔兹海默病、心血管疾病、肌肉减少症以及骨质疏松等的相关分子机制,并且阐述运动干预之后各疾病相关分子机制变化,进一步论述了衰老机体中运动调节内质网应激和线粒体自噬及运动干预后发挥保护效应的分子机制,拟为运动延缓机体衰老及预防老年性相关疾病的发生提供新的思路和理论依据。  相似文献   

5.
低氧暴露激活低氧诱导因子(hypoxia inducible factors, HIFs),从而上调其靶基因的表达,包括糖代谢相关蛋白如葡萄糖转运蛋白(glucose transporters, GLUTs)和糖酵解相关酶如乳酸脱氢酶A (lactate dehydrogenase A, LDHA)、醛缩酶A (aldolase A, ALDA)等基因,因此HIFs参与葡萄糖氧化分解供能,在介导机体低氧应答过程及减控体重中起重要作用。运动训练可激活过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs),其参与调控脂肪酸代谢、胰岛素敏感性及机体能量平衡,对于减控体重具有积极作用;另外,低氧暴露或者是运动训练均可激活细胞内能量感受器AMP激活的蛋白激酶(5’-AMP activated protein kinase, AMPK),促进葡萄糖和脂肪酸氧化进程,促进肥胖机体减控体重。研究表明,相比于单纯低氧暴露或运动训练,低氧训练的双重刺激更有利于减控体重。低氧训练激活HIFs、PPARs及AMPK,这三种因子作为糖脂代谢的关键调控因子,是否在低氧训练减控体重过程中存在叠加效应?本文结合前人研究,综述HIFs、PPARs及AMPK三者在低氧训练下的相互作用,以及以AMPK-HIFs轴和AMPK-PPARs轴为核心的低氧训练减控体重的可能机制,为低氧训练应用于减控体重实践提供理论依据。  相似文献   

6.
目的:研究低氧预适应对体外培养的星形胶质细胞低氧耐受性的影响。方法:体外培养的鼠脑星形胶质细胞,随机分为对照组(control,C组),低氧损伤组(hypoxia,H组),低氧预适应组(hypoxic preconditioning,HP组),通过检测细胞MTT代谢变化、凋亡发生和形态学观察探讨低氧预适应对星型胶质细胞低氧损伤的保护作用;免疫细胞化学方法分析Bcl-2和Bax的表达差异。结果:与低氧组相比,HP48、HP72组MTT代谢活性较高。免疫细胞化学结果提示低氧预适应组Bcl-2表达高于低氧损伤组,低氧预适应组Bax表达低于低氧损伤组。结论:低氧预适应对大鼠星形胶质细胞低氧损伤有保护作用,可能与Bax表达受抑,维持Bcl-2表达有关,通过对抗凋亡程序的发展产生保护作用。  相似文献   

7.
低氧能够引起秀丽线虫发生相应的生理和行为学变化,并可保护机体免受缺氧损伤.秀丽线虫的低氧诱导因子(HIF-1)的恒定性调控通路和人类的相应通路之间具有高度保守性,因此秀丽线虫也已成为研究低氧应答调控通路进化保守性的重要工具之一.阐明秀丽线虫的低氧应答机制将为了解人类低氧相关疾病的发病机制提供有价值的线索.  相似文献   

8.
低氧/缺血会对神经系统产生损伤,减轻低氧/缺血状态对脑神经损伤的至关重要的一个方面就是抑制氧自由基和炎性因子的产生,这也是目前治疗的一个重要策略。低氧/缺血预适应可以通过抑制氧自由基和炎性因子来保护神经细胞。低氧/缺血预适应刺激的外泌体的转运可能是保护作用机制之一,本文通过对外泌体在低氧/缺血状态下发挥的神经保护作用和作用机制等方面进行综述,为低氧/缺血脑神经保护的治疗研究提供新思路。  相似文献   

9.
周振  汤锋  格日力 《生理学报》2023,(1):130-136
肺动脉压力变化是反映机体在高原低氧环境中适应习服或病理损伤的重要生理指标,不同海拔、不同时间的低氧刺激对肺动脉压力的影响也不尽相同,其中许多因素影响肺动脉压力的变化,如血管平滑肌的收缩、血流动力学改变、血管活性调节异常以及心肺功能的异常改变等,深入探讨低氧环境下肺动脉压力的调节因素对明确低氧适应和习服的相关机制及急慢性高原病预防、诊断、治疗、预后具有重要的意义。近年来关于高海拔低氧环境下影响肺动脉压力的相关因素研究有了较大的进展,本文从循环系统血流动力学、血管活性状态及心肺功能变化等方面对低氧环境下肺动脉压力的调节因素和干预措施进行综述。  相似文献   

10.
脑和心脏等重要器官的缺血,低氧损伤可导致患者语言障碍、瘫痪、意识丧失及死亡等一系列严重后果,因此一直是基础医学研究和临床治疗的重点。1986、1990年,美国学者Murry和日本学者Kitagawa等分别在心脏和脑发现了一种内源性保护机制,即缺血,低氧预适应现象(I/HPC),为临床治疗中风等缺血/低氧性疾病开辟了新的道路。因此,对I/HPC机制的研究,尤其是对参与I/HPC形成的细胞信号传导通路的研究,已成为近年的研究热点。本文就蛋白激酶C家族(PKCs)在缺血广低氧损伤和预适应形成中作用做一简要概述。  相似文献   

11.
雌激素作为一种内源性激素参与多器官生理过程的调节,通过与雌激素受体结合或介导不同雌激素受体间的协作而发挥效应,其中在中枢神经系统疾病的发展中具有保护作用已受到人们的广泛关注。脑卒中作为一种高发疾病,具有明显的性别差异性,因此对脑内雌激素的研究为脑卒中的预防及治疗提供了新的方向。我们针对雌激素受体不同亚型在脑内的分布及其在缺血再灌注损伤中的作用研究进展做简要综述。  相似文献   

12.
低压低氧引起机体各组织器官的病理生理变化,其中氧化应激损伤是大多数疾病的病理生理基础。大量研究发现,低压低氧导致机体内抗氧化酶水平降低,而脂质过氧化终产物丙二醛水平升高,表明低压低氧加重机体的氧化应激损伤。本文描述急性低压低氧暴露以及间歇性低压低氧预处理对氧化-抗氧化系统的影响,并阐述世居高原人群的高原适应性,就不同类型低压低氧对机体氧化-抗氧化系统的影响作一综述。急性低压低氧不仅影响抗氧化酶活性,而且具有抑制抗细胞凋亡蛋白,促进缺氧细胞凋亡的作用,影响氧化-抗氧化系统的平衡。而间歇性慢性低压低氧预处理则对组织器官具有保护作用,为治疗心血管疾病提供了一条非药物治疗的可能途径。  相似文献   

13.
甲烷(CH_4)是结构最简单的碳氢化合物,之前认为只有哺乳动物的口腔和胃肠道中的产甲烷菌才能生成CH_4。但是近年来研究显示,动物体内的胆碱及其代谢物也能分解或转变成CH_4,这种内源性CH_4具有保护细胞膜免受活性氧(reactive oxygen species,ROS)的攻击以及促进细胞膜修复的作用。此外,外源性CH_4具有较强的抗炎、抗氧化、抗凋亡的生物学效应,提高脑、心脏、肝脏等多种组织器官的抗氧化能力,减轻其氧化应激损伤和炎症损伤的程度,对多种临床疾病的治疗具有研究和应用价值。因此,本文综述近年来CH_4在哺乳动物体内的合成代谢及其抗炎、抗氧化和抗凋亡的生物学功能方面的最新研究进展,为预防和治疗氧化应激相关疾病的研究提供新的治疗策略和切入点。  相似文献   

14.
肝脏是机体重要的代谢器官,在机体全身衰老中尤为重要。脂肪肝、肝硬化和肝癌等老年常见病都与肝脏衰老密切相关。细胞凋亡作为一种细胞自我清除的保护机制,在生物机体衰老过程中不可或缺。越来越多的研究证据表明,凋亡在肝脏衰老中起着重要作用。适度的凋亡对于肝脏衰老是必要的;过度凋亡会造成功能细胞的大量丧失、疾病恶化,甚至最后导致肝功能衰竭;凋亡不足则会使损伤的细胞积蓄,导致细胞坏死或癌变。因此,维持细胞凋亡在衰老肝脏中的适度平衡可延缓或减轻肝脏衰老对机体的影响。该文针对肝脏衰老过程中凋亡的调控机制包括氧化应激、基因不稳定性、脂肪毒性、内质网应激、营养感应失调等的研究进展进行了分析总结。  相似文献   

15.
促红细胞生成素(EPO)是体内一种重要的糖蛋白激素,主要由胎肝和成人的肾脏产生。EPO的表达除受到转录因子的调控之外,还受到表观遗传学的调控。研究发现,EPO及其受体(EPOR)在中枢神经系统中广泛表达,提示其对中枢系统具有神经保护作用。低氧预适应是机体抗缺氧或缺血的一种内源性保护机制,它可以促进EPO表达,减轻低氧/缺血引起的神经元损伤。EPO主要通过激活一系列信号转导通路及多种可能的机制发挥神经保护作用。  相似文献   

16.
随着研究的深入,脑铁代谢相关分子突变引起的疾病越来越多的被人们所认识。脑铁代谢紊乱可能是神经退行性疾病的发病原因之一。对脑铁代谢机理的认识将为预防和治疗脑铁代谢紊乱相关疾病提供重要的理论根据。对脑铁代谢的过程,脑铁代谢的相关分子以及这些分子对脑内铁稳态的调控作用作一介绍。  相似文献   

17.
幽门螺杆菌是一种全世界范围的人类感染病原菌,人感染该菌后可以被诱导产生较强的体液免疫应答和一定程度的细胞免疫应答反应;但是,自然感染往往不能使机体产生有效的免疫保护,相反可引起对机体的免疫病理损伤,有效的疫苗应该被设计为能够诱导机体产生非病理损伤的特异的免疫保护反应,以此来预防和治疗幽门螺杆菌相关性疾病。本综述了这些方面的研究进展。  相似文献   

18.
间歇性低氧适应的心脏保护   总被引:9,自引:0,他引:9  
Zhang Y  Yang HT  Zhou ZN 《生理学报》2007,59(5):601-613
间歇性低氧(intermittent hypoxia,IH)是指一定时间间断地暴露于低氧环境,而其余时间处于常氧环境。IH是机体某种生理和病理状态下的低氧形式。研究表明:间歇性低氧适应(IHadaptation),类似缺血预适应(ischemic preconditioning,IPC)和长期高原低氧适应(long-termhigh-altitude hypoxic adaptation,LHA),具有明显的心脏保护作用,表现为增强心肌对缺血/再灌注损伤的耐受性、限制心肌梗死面积和形态学改变、抗细胞凋亡、促进缺血/再灌注心脏舒缩功能的恢复,以及抗心律失常。尽管IH对心脏的保护作用不容质疑,但其作用机制远未阐明。IH心脏保护作用可能涉及氧的运输、能量代谢、神经体液调节、抗氧化酶、应激蛋白、腺苷系统、ATP敏感钾通道、线粒体及其钙调控、一氧化氮和蛋白激酶等多方面机制,并受低氧处理方式、动物年龄和性别等因素影响。IH心脏保护持续时间明显长于IPC,而对机体的不良影响远小于LHA,具有潜在的应用价值。  相似文献   

19.
终生的抗原/应激原暴露使机体处于慢性氧化应激状态。氧化应激导致生物分子的氧化损伤,引起机体产生内源性的损伤相关的分子模式(damage associated molecular patterns,DAMPs)和细胞因子的释放。损伤相关的分子模式能激活模式识别受体(pattern recognition receptors,PRRs)与非模式识别受体。细胞因子能激活PRRs下游的信号通路。这些受体介导的信号通路的激活,导致细胞因子和趋化因子释放增加,招募和激活更多的炎性细胞,引起机体系统性慢性无菌炎症反应。机体稳态的调节系统,特别是免疫系统细胞更易因氧化应激遭受损伤,导致机体稳态平衡的破坏,因而在炎症衰老中起重要作用。遗传因素是影响氧化应激-炎症-衰老及老年相关疾病的重要因素,涉及氧化应激、炎症的基因可对炎性衰老产生影响。载脂蛋白ApoE基因多态性明显影响ApoE蛋白的结构与功能,使不同ApoE蛋白表现出不同的抗氧化和抗炎作用,从而影响炎性衰老和老年相关疾病的发展和预后。抗炎结合调节ApoE表达是对抗炎性衰老和老年相关疾病有效手段之一。本文结合我们的前期研究,对以上方面的研究进展作一综述。  相似文献   

20.
脊髓型颈椎病(cervical spondylotic myelopathy, CSM)是临床常见病、多发病,由该病引起的脊髓受损而产生的脊髓功能障碍是其最常见的临床特征。在脊髓损伤中,多种因素能通过自噬相关信号通路而激活自噬,适度的自噬可以对脊髓损伤起到神经保护作用,而增加细胞存活率、恢复和增加自噬通量可以改善损伤后的脊髓功能的恢复;在CSM脊髓损伤中,脑源性神经营养因子(brain derived neurotrophic factor, BDNF)与其受体原肌球蛋白受体激酶B(tropomyosin receptor kinase B, TrkB)及其相关通路是参与保护神经细胞的重要途径之一,细胞自噬在这一过程中起到了重要的调节作用。本文通过阐释自噬与BDNF/TrkB信号通路在CSM过程中的作用及其对脊髓损伤的保护机制,以期对基础研究及临床研究提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号