首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The reaction of hydroxyl radical with 1 phenylpropanoid glycoside ( PPG), cistanoside C, and its 3 derivatives: 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glucose and 6-O-(E)-p-hydroxy-cinnamoylglucose isolated from folk medicinal herbs was investigated by pulse radiolysis technique respectively. The reaction rate constants were determined by analysis of built-up trace of absorption at λ_(max) of specific transient absorption spectra of PPG and its derivatives upon attacking·OH. All four compounds react with·OH at close to diffusion controlled rate (1.03×10~9—19.139×10~9 L·mol~(-1)·s~(-1)), suggesting that they are effective·OH scavengers. The results demonstrated that the numbers of phenolic hydroxyl groups of PPG and its derivatives are directly related to their scavenging activities. By comparing the reaction rates of·OH with 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glueose or 6-O-(E)-p-hydroxy-cinnomoyl-glucose, it is evident that the phenylethyl g  相似文献   

2.
With a model system of pBR322 plasmid DNA solution in vitro, the dose effects of radiation- induced single- and double-strand breaks (SSB and DSB) were measured and DSB was distinguished into α- and β-types. Under the condition of low scavenging capacity existing in the irradiated DNA solution, SSB and αDSB were mainly induced by hydroxyl radicals (·OH). Moreover, a certain relationship was obtained between the SSB and αDSB yields and the DNA concentration. It was found that when the DNA solution was irradiated in the presence of 2.5 mmol dm–3 mannitol, the reciprocals of G(SSB) and G(αDSB), respectively, were linearly related to the reciprocal of the DNA concentration, i.e. the competition reactions of DNA and mannitol for ·OH radicals can be described by second-order kinetics. The rate coefficients and the efficiencies of the ·OH radical inducing SSB were deduced. Also, the reaction rate coefficients and the efficiencies for the induction of αDSB from SSB by the ·OH radical transfer mechanism, were first derived from the competition kinetics. Received: 27 October 1999 / Accepted: 15 March 2000  相似文献   

3.
A gray and low viscosity extracellular polysaccharide (EPS) composed of N-acetylglucosamine, xylose, and mannose was isolated from culture medium of Bacillus sp. strain LBP32 by ethanol precipitation followed by dialysis and freeze-drying. The crude biopolymer showed an apparent molecular weight (Mw) of ∼ 9.62 × 104. Chemical and spectroscopic studies revealed that the bacterial biopolymer was composed of a β-1,4-linked backbone carrying a low content of β-1,3-linked backbone. In addition, the EPS demonstrated a high antioxidant activity in a concentration dependent manner. The 50% inhibition concentration (IC50) for quenching hydroxyl radical (·OH) and superoxide radical (·O2 ) were 0.042 and 0.165 mg/mL, respectively. Furthermore, the EPS demonstrated a strong protective effect against lipid peroxidation and radiation such as UV radiation and ion beam irradiation. These results indicate that the protective effects of the EPS were most likely due to its free radical scavenging ability.  相似文献   

4.
Alkylation of cyclomaltohexaose (α-cyclodextrin, α-CD) with allyl or cinnamyl bromide, followed by peracetylation of remaining hydroxyl groups and separation of isomers, resulted in the set of peracetylated 2I-O-, 3I-O- and 6I-O-alkylated α-CDs in up to 27% yields. Ozonolysis or oxidative cleavage of peracetylated allyl or cinnamyl derivatives resulted in a complete set of peracetylated 2I-O-, 3I-O- and 6I-O-formylmethyl or carboxymethyl derivatives that are useful precursors for preparation of regioselectively monosubstituted derivatives of α-CD. Moreover, a quick method to recognize single 2I-O-, 3I-O- and 6I-O-monosubstituted peracetylated CDs from one another using only their 1H NMR spectra has been proposed.  相似文献   

5.
In order to elucidate the radiolysis mechanism of p-bromophenol, quantitative determination of the radiolysis products was carried out by gas chromatography and polarography. G(?p · BP) and G(Br?) were 3.86 and 2.58 at neutral pH, and 1.09 and 0.26 at pH 1.0, respectively, This, together with the radical scavenger effects indicated that hydrated electrons contribute principally to the degradation of p-bromophenol through debromination, followed by the formation of dimer and trimer products by phenylation of the resulting p-hydroxyphenyl radical. This chain-like reaction may cause the difference (G-value = 1.28) between G(?p· BP) and G(Br?). The contribution of OH radicals to G(?p· BP) is known to be small as compared with other aromatic compounds, because of the poor yield of hydroxylated products such as hydroquinone, 4-bromocatechol and 4-bromoresorcinol.  相似文献   

6.
As a type of reactive oxygen species (ROS), hydroxyl radical (·OH) is closely associated with many kinds of diseases. The present study aimed to develo p a novel OH fluorescent probe based on coumarin, a new compound that has not been previously reported. This probe exhibited good linear range and selectivity for ·OHl, and is able to avoid interference from some metal ions and other kinds of ROS (H2O2, O2.‐, 1O2, and HClO). Meanwhile, this probe has been used to evaluate the ·OH‐scavenging efficiency of different compounds, such as isopropyl alcohol, cytosine, uracil, Tempo, Glutathione (GSH), and dimethyl sulfoxide (DMSO). Therefore, the present study shows that this probe not only can effectively measure the level of ·OH, but also can assess the ·OH‐scavenging efficiency of different compounds. Furthermore this current study suggested that following further optimization, this probe may be potentially applied in the diagnosis of oxidative stress in human body.  相似文献   

7.
The oxidative stress and antioxidant systems in soybean leaves and roots infected with plant pathogen Aspergillus niger were studied following treatment with different concentrations of cholic acid. Several oxidative stress parameters were analyzed: production of superoxide (O2 ·−) and hydroxyl radicals (·OH), lipid peroxidation (LP), and superoxide dismutase (SOD; EC 1.15.1.1) activity, as well as the content of reduced glutathione (GSH). Results showed that inoculation with A. niger led to the increase of O2 ·− production and GSH quantities in leaves and ·OH in roots. The highest activity of SOD occured in infected plants treated with cholic acid in concentrations of 40 and 60 mg L−1 which ultimately led to a decrease in O2 ·− production. Inoculation with Aspergillus in combination with elevated cholic acid concentrations also increased ·OH production which is correlated with increased LP. These results may support the idea of using cholic acid as an elicitor to trigger hypersensitive response in plant cells. Use of cholic acid may also actively contribute to soybean plants defense response against pathogen attack.  相似文献   

8.
Six new protopanaxadiol-type ginsenosides, named ginsenosides Ra(4) -Ra(9) (1-6, resp.), along with 14 known dammarane-type triterpene saponins, were isolated from the root of Panax ginseng, one of the most important Chinese medicinal herbs. The structures of the new compounds were determined by spectroscopic methods, including 1D- and 2D-NMR, HR-MS, and chemical transformation as (20S)- 3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (1), (20S)-3-O-[β-D-6-O-acetylglucopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (2), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (3), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (4), (20S)-3-O-{β-D-4-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (5), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (6). The sugar moiety at C(3) of the aglycone of each new ginsenoside is butenoylated or acetylated.  相似文献   

9.
Summary

Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (5–8-BendiFA), (Z)-β-(4-[(E)-2-carboxyvinyl]-2-methoxy-phenoxy)-4-hydroxy-3-methoxycinnamic acid (8-O-4-diFA) and (E,E)-4,4′-dihydroxy-5,5′-dimethoxy-3,3′-bicinnamic acid (5–5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxylic acid (8–8-diFA cyclic form) and 4,4′-dihydroxy-3,3′-dimethoxy-β,β'-bicinnamic acid (8–8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: λmax: 323 nm, λmin: 258 nm, ελmax (M?1cm?1): 24800 ± 2100 and ε280 (M?1cm?1): 19700 ± 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.  相似文献   

10.
Phytochemical investigations were performed on the EtOAc-soluble fraction of the whole plant of the sky flower (Duranta repens) which led to the isolation of the iridoid glycosides 16. Their structures were elucidated by both 1D and 2D NMR spectroscopic analysis. All the compounds showed potent antioxidative scavenging activity in four different tests, with half maximal inhibitory concentration (IC50) values in the range 0.481–0.719?mM against DPPH radicals, 4.07–17.21 µM for the hydroxyl radical (?OH) inhibitory activity test, 43.3–97.37 µM in the total reactive oxygen species (ROS) inhibitory activity test, and 3.39–18.94 µM in the peroxynitrite (ONOO?) scavenging activity test. Duranterectoside A (1) displayed the strongest scavenging potential with IC50 values of (0.481?±?0.06?mM, 4.07?±?0.03, 43.30?±?0.05, 3.39?±?0.02?µM) for the DPPH radicals, ?OH inhibitory activity test, total ROS inhibitory activity test and the ONOO? scavenging activity test, respectively.  相似文献   

11.
This paper provides evidence that dietary flavonoids can repair a range of oxidative radical damages on DNA, and thus give protection against radical-induced strand breaks and base alterations. We have irradiated dilute aqueous solutions of plasmid DNA in the absence and presence of flavonoids (F) in a “constant ·OH radical scavenging environment”, k of 1.5 × 107 s-1 by decreasing the concentration of TRIS buffer in relation to the concentration of added flavonoids. We have shown that the flavonoids can reduce the incidence of single-strand breaks in double-stranded DNA as well as residual base damage (assayed as additional single-strand breaks upon post-irradiation incubation with endonucleases) with dose modification factors of up to 2.0 ± 0.2 at [F] < 100 μM by a mechanism other than through direct scavenging of ·OH radicals. Pulse radiolysis measurements support the mechanism of electron transfer or H· atom transfer from the flavonoids to free radical sites on DNA which result in the fast chemical repair of some of the oxidative damage on DNA resulting from ·OH radical attack. These in vitro assays point to a possible additional role for antioxidants in reducing DNA damage.  相似文献   

12.
Phytochemical investigations on the n-BuOH-soluble fraction of the whole plant of Buddleja davidii led to the isolation of the phenylpropanoid glycosides 1-10. Their structures were determined by 1D and 2D NMR spectroscopic techniques. All the compounds showed potent antioxidative activity in three different tests, with IC50 values in the range 4.15-9.47 μM in the hydroxyl radical (˙OH) inhibitory activity test, 40.32-81.15 μM in the total ROS (reactive oxygen species) inhibitory activity test, and 2.26-7.79 μM in the peroxynitrite (ONOO?) scavenging activity test. Calceolarioside A (1) displayed the strongest scavenging potential with IC50 values of (4.15?±?0.07, 40.32?± 0.09, 2.26?±?0.03μM) for ˙OH, total ROS and scavenging of ONOO?, respectively.  相似文献   

13.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

14.
Rebamipide, an antiulcer agent, is known as a potent hydroxyl radical (?OH) scavenger. In the present study, we further characterized the scavenging effect of rebamipide against ?OH generated by ultraviolet (UV) irradiation of hydrogen peroxide (H2O2), and identified the reaction products to elucidate the mechanism of the reaction. Scavenging effect of rebamipide was accessed by ESR using DMPO as a ?OH-trapping agent after UVB exposure (305?nm) to H2O2 for 1?min in the presence of rebamipide. The signal intensity of ?OH adduct of DMPO (DMPO-OH) was markedly reduced by rebamipide in a concentration-dependent fashion as well as by dimethyl sulfoxide and glutathione as reference radical scavengers. Their second order rate constant values were 5.62?×?1010, 8.16?×?109 and 1.65?×?1010?M-1?s-1, respectively. As the rebamipide absorption spectrum disappeared during the reaction, a new spectrum grew due to generation of rather specific reaction product. The reaction product was characterized by LC-MS/MS and NMR measurements. Finally, a hydroxylated rebamipide at the 3-position of the 2(1H)-quinolinone nucleus was newly identified as the major product exclusively formed in the reaction between rebamipide and the ?OH generated by UVB/H2O2. Specific formation of this product explained the molecular characteristics of rebamipide as a potential ?OH scavenger.  相似文献   

15.
The reaction mechanisms involved in the scavenging of hydroxyl (OH·), methoxy (OCH3 ·), and nitrogen dioxide (NO2 ·) radicals by ellagic acid and its monomethyl and dimethyl derivatives were investigated using the transition state theory and density functional theory. The calculated Gibbs barrier energies associated with the abstraction of hydrogen from the hydroxyl groups of ellagic acid and its monomethyl and dimethyl derivatives by an OH· radical in aqueous media were all found to be negative. When NO2 · was the radical involved in hydrogen abstraction, the Gibbs barrier energies were much larger than those calculated when the OH· radical was involved. When OCH3 · was the hydrogen-abstracting radical, the Gibbs barrier energies lay between those obtained with OH· and NO2 · radicals. Therefore, the scavenging efficiencies of ellagic acid and its monomethyl and dimethyl derivatives towards the three radicals decrease in the order OH· >> OCH3 · > NO2 ·. Our calculated rate constants are broadly in agreement with those obtained experimentally for hydrogen abstraction reactions of ellagic acid with OH· and NO2· radicals.
Figure
Reactant complex (RC), transition state (TS), and product complex (PC) for hydrogen abstraction from ellagic acid by an OH· radical  相似文献   

16.
Free radical activity towards superoxide anion radical (), hydroxyl radical (HO?) and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) of a series of novel thiazolidine‐2,4‐dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18‐crown‐6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15–38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of (41–88%). The tested compounds showed inhibition of HO? ‐dependent DMPO‐OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
网地藻多糖清除DPPH·自由基活性的动力学研究   总被引:1,自引:0,他引:1  
该研究通过超声辅助并采用醇沉、脱蛋白、脱色、干燥的方法,分别检测低(0.1 mg·mL~(-1))、中(0.25mg·mL~(-1))、高(0.5 mg·mL~(-1))三种浓度下的网地藻多糖对DPPH·自由基的清除能力,探讨质量浓度和反应时间对网地藻多糖清除DPPH·自由基活性的变化规律。按照一级反应动力学方程和二级反应动力学方程分别建立反应动力学模型。结果表明:不同的质量浓度和反应时间对网地藻多糖清除DPPH·自由基活性均有影响,网地藻多糖质量浓度提高,其清除DPPH·自由基的能力逐渐加强,当网地藻多糖浓度为0.5 mg·mL~(-1)时,反应20 min,网地藻多糖清除DPPH·自由基的清除率最高为86.06%,其清除DPPH·自由基活性半数清除率(IC_(50))为0.25 mg·mL~(-1)。准一级动力学模型拟合的线性相关性较差,相关系数R~2的范围分别为0.848~0.891;准二级动力学模型拟合的相关系数R~2的范围为0.902~0.967,因此采用二级动力学拟合方程能较好地描述网地藻多糖对DPPH·自由基的清除能力。网地藻多糖在低(0.1 mg·mL~(-1))、中(0.25 mg·mL~(-1))、高(0.5 mg·mL~(-1))三种浓度时对DPPH·的二级反应的清除速率常数(k_2)分别为0.011、0.054、0.421。这说明网地藻多糖随着反应浓度逐渐升高其清除DPPH·自由基的速度越来越快,清除自由基能力也越来越强,结合IC_(50)值来共同评价抗氧化能力,IC_(50)值越小,反应速率值越大,表明其抗氧化活性越好,这与实验得出的数据一致。  相似文献   

18.
1-D-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-1-O-hexadecyl-myo-inositol (14), 1-D-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 1-(octadecyl phosphate) (18), 1-D-6-O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (24), 1-D-6-O-(2-amino-2-deoxy-alpha-D-mannopyranosyl)-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (30) and the corresponding 2-amino-2-deoxy-alpha-D-galactopyranosyl analogue 36 have been prepared and tested in cell-free assays as substrate analogues/inhibitors of alpha-(1 --> 4)-D-mannosyltransferases that are active early on in the glycosylphosphatidylinositol (GPI) biosynthetic pathways of Trypanosoma brucei and HeLa (human) cells. The corresponding N-acetyl derivatives of these compounds were similarly tested as candidate substrate analogues/inhibitors of the N-deacetylases present in both systems. Following on from an early study, 1-L-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-2-O-methyl-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (44) was prepared and tested as an inhibitor of the trypanosomal alpha-(1 --> 4)-D-mannosyltransferase. A brief summary of the biological evaluation of the various analogues is provided.  相似文献   

19.
Chlorogenic acid (CGA) is considered to act as an antioxidant. However, the inhibitory effects of CGA on specific radical species are not well understood. Electron spin resonance (ESR) in combination with spin trapping techniques was utilized to detect free radicals. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trapping reagent while the Fenton reaction was used as a source of hydroxyl radical (·OH). We found that CGA scavenges ·OH in a dose-dependent manner. The kinetic parameters, IC50 and Vmax, for CGA scavenging of ·OH were 110 and 1.27 M/sec, respectively. The rate constant for the scavenging of ·OH by CGA was 7.73 × 109 M–1 sec–1. Our studies suggest that the antioxidant properties of CGA may involve a direct scavenging effect of CGA on ·OH.  相似文献   

20.
Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1–1.6 times body mass and 0.8–1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg−0.75 · day−1 to 1767.3 kJ · kg−0.75 · day−1 for A. jamaicensis and 1282.6–1545.2 kJ · kg−0.75 · day−1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6–5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N · g−1 and 0.756 mg N · g−1 dry matter intake and endogenous urinary N losses were 163.31 mg N · kg−0.75 · day−1 and 71.54 mg N · kg−0.75 · day−1. A. jamaicensis required 332.3 mg · kg−0.75 · day−1 and 885.3 mg · kg−0.75 · day−1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg−0.75 · day−1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g−1 dry matter intake and 96.0 mg N · kg−0.75 · day−1, respectively, and bats required 529.8 mg · kg−0.75 · day−1 (total N) or 284.0 mg · kg−0.75 · day−1 (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet. Accepted: 24 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号