首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of hydroxyl radical with 1 phenylpropanoid glycoside (PPG), cistanoside C, and its 3 derivatives: 1-0-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-femloyl-glucose and 6-O-(E)-p-hydroxy-cinnarnoylglucose isolated from folk medicinal herbs was investigated by pulse radiolysis technique respectively. The reaction rate constants were determined by analysis of built-up trace of absorption at λmax of specific transient absorption spectra of PPG and its derivatives upon attacking · OH. All four compounds react with · OH at close to diffusion controlled rate (1. 03 × 109-19.139 × 109 L · mol−1 · s−1), suggesting that they are effective · OH scavengers. The results demonstrated that the numbers of phenolic hydroxyl groups of PPG and its derivatives are directly related to their scavenging activities. By comparing the reaction rates of · OH with 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glucose or 6-O-(E)-p-hydroxy-cinnomoyl-glucose, it is evident that the phenylethyl group is more impofiant than phenylacryloyl group for scavenging · OH.  相似文献   

2.
DNA damaged by oxygen radicals has been implicated as a causative event in a number of degenerative diseases, including cancer and aging. So it is very impotant to look for ways in which either oxygen radicals are scavenged prior to DNA damage or damaged DNA is repaired to supplement the cells' inadequate repair capacity. The repair activity and its mechanism of verbaseoside, isolated from Pedicularis species, towards dAMP-OH·was studied with pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mmol/L dAMP aqueous solution containing verbascoside, the transient absorption spectrum of the hydroxyl adduct of dAMP decayed with the formation of that of the phenoxyl radical of verbascoside well under 100 microseconds after electron pulse irradiation. The result indicated that dAMP hydroxyl adducts can be repaired by verbascoside. The rate constants of the repair reaction was deduced to be 5.9×10~8 dm~3·mol~(-1)·s~(-1). A deeper understanding of this new repair mechanism will undo  相似文献   

3.
As a type of reactive oxygen species (ROS), hydroxyl radical (·OH) is closely associated with many kinds of diseases. The present study aimed to develo p a novel OH fluorescent probe based on coumarin, a new compound that has not been previously reported. This probe exhibited good linear range and selectivity for ·OHl, and is able to avoid interference from some metal ions and other kinds of ROS (H2O2, O2.‐, 1O2, and HClO). Meanwhile, this probe has been used to evaluate the ·OH‐scavenging efficiency of different compounds, such as isopropyl alcohol, cytosine, uracil, Tempo, Glutathione (GSH), and dimethyl sulfoxide (DMSO). Therefore, the present study shows that this probe not only can effectively measure the level of ·OH, but also can assess the ·OH‐scavenging efficiency of different compounds. Furthermore this current study suggested that following further optimization, this probe may be potentially applied in the diagnosis of oxidative stress in human body.  相似文献   

4.
The oxidative stress and antioxidant systems in soybean leaves and roots infected with plant pathogen Aspergillus niger were studied following treatment with different concentrations of cholic acid. Several oxidative stress parameters were analyzed: production of superoxide (O2 ·−) and hydroxyl radicals (·OH), lipid peroxidation (LP), and superoxide dismutase (SOD; EC 1.15.1.1) activity, as well as the content of reduced glutathione (GSH). Results showed that inoculation with A. niger led to the increase of O2 ·− production and GSH quantities in leaves and ·OH in roots. The highest activity of SOD occured in infected plants treated with cholic acid in concentrations of 40 and 60 mg L−1 which ultimately led to a decrease in O2 ·− production. Inoculation with Aspergillus in combination with elevated cholic acid concentrations also increased ·OH production which is correlated with increased LP. These results may support the idea of using cholic acid as an elicitor to trigger hypersensitive response in plant cells. Use of cholic acid may also actively contribute to soybean plants defense response against pathogen attack.  相似文献   

5.
With a model system of pBR322 plasmid DNA solution in vitro, the dose effects of radiation- induced single- and double-strand breaks (SSB and DSB) were measured and DSB was distinguished into α- and β-types. Under the condition of low scavenging capacity existing in the irradiated DNA solution, SSB and αDSB were mainly induced by hydroxyl radicals (·OH). Moreover, a certain relationship was obtained between the SSB and αDSB yields and the DNA concentration. It was found that when the DNA solution was irradiated in the presence of 2.5 mmol dm–3 mannitol, the reciprocals of G(SSB) and G(αDSB), respectively, were linearly related to the reciprocal of the DNA concentration, i.e. the competition reactions of DNA and mannitol for ·OH radicals can be described by second-order kinetics. The rate coefficients and the efficiencies of the ·OH radical inducing SSB were deduced. Also, the reaction rate coefficients and the efficiencies for the induction of αDSB from SSB by the ·OH radical transfer mechanism, were first derived from the competition kinetics. Received: 27 October 1999 / Accepted: 15 March 2000  相似文献   

6.
In order to elucidate the radiolysis mechanism of p-bromophenol, quantitative determination of the radiolysis products was carried out by gas chromatography and polarography. G(?p · BP) and G(Br?) were 3.86 and 2.58 at neutral pH, and 1.09 and 0.26 at pH 1.0, respectively, This, together with the radical scavenger effects indicated that hydrated electrons contribute principally to the degradation of p-bromophenol through debromination, followed by the formation of dimer and trimer products by phenylation of the resulting p-hydroxyphenyl radical. This chain-like reaction may cause the difference (G-value = 1.28) between G(?p· BP) and G(Br?). The contribution of OH radicals to G(?p· BP) is known to be small as compared with other aromatic compounds, because of the poor yield of hydroxylated products such as hydroquinone, 4-bromocatechol and 4-bromoresorcinol.  相似文献   

7.
Alkylation of cyclomaltohexaose (α-cyclodextrin, α-CD) with allyl or cinnamyl bromide, followed by peracetylation of remaining hydroxyl groups and separation of isomers, resulted in the set of peracetylated 2I-O-, 3I-O- and 6I-O-alkylated α-CDs in up to 27% yields. Ozonolysis or oxidative cleavage of peracetylated allyl or cinnamyl derivatives resulted in a complete set of peracetylated 2I-O-, 3I-O- and 6I-O-formylmethyl or carboxymethyl derivatives that are useful precursors for preparation of regioselectively monosubstituted derivatives of α-CD. Moreover, a quick method to recognize single 2I-O-, 3I-O- and 6I-O-monosubstituted peracetylated CDs from one another using only their 1H NMR spectra has been proposed.  相似文献   

8.
A gray and low viscosity extracellular polysaccharide (EPS) composed of N-acetylglucosamine, xylose, and mannose was isolated from culture medium of Bacillus sp. strain LBP32 by ethanol precipitation followed by dialysis and freeze-drying. The crude biopolymer showed an apparent molecular weight (Mw) of ∼ 9.62 × 104. Chemical and spectroscopic studies revealed that the bacterial biopolymer was composed of a β-1,4-linked backbone carrying a low content of β-1,3-linked backbone. In addition, the EPS demonstrated a high antioxidant activity in a concentration dependent manner. The 50% inhibition concentration (IC50) for quenching hydroxyl radical (·OH) and superoxide radical (·O2 ) were 0.042 and 0.165 mg/mL, respectively. Furthermore, the EPS demonstrated a strong protective effect against lipid peroxidation and radiation such as UV radiation and ion beam irradiation. These results indicate that the protective effects of the EPS were most likely due to its free radical scavenging ability.  相似文献   

9.
This paper provides evidence that dietary flavonoids can repair a range of oxidative radical damages on DNA, and thus give protection against radical-induced strand breaks and base alterations. We have irradiated dilute aqueous solutions of plasmid DNA in the absence and presence of flavonoids (F) in a “constant ·OH radical scavenging environment”, k of 1.5 × 107 s-1 by decreasing the concentration of TRIS buffer in relation to the concentration of added flavonoids. We have shown that the flavonoids can reduce the incidence of single-strand breaks in double-stranded DNA as well as residual base damage (assayed as additional single-strand breaks upon post-irradiation incubation with endonucleases) with dose modification factors of up to 2.0 ± 0.2 at [F] < 100 μM by a mechanism other than through direct scavenging of ·OH radicals. Pulse radiolysis measurements support the mechanism of electron transfer or H· atom transfer from the flavonoids to free radical sites on DNA which result in the fast chemical repair of some of the oxidative damage on DNA resulting from ·OH radical attack. These in vitro assays point to a possible additional role for antioxidants in reducing DNA damage.  相似文献   

10.
We characterized the effect of ten days of training on lipid metabolism in 6 [age 37.2 (2.3) years] sedentary, obese [BMI 34.4 (3.0) kg · m−2] males with normal glucose tolerance. An oral glucose tolerance test was performed prior to and at the end of the 10 d of training period. The duration of each daily exercise session was 40 min at an intensity equivalent to ˜75% of the age predicted maximum heart rate. Blood measurements were performed after an overnight fast, before and at the end of the 10 d period. Plasma triacylglycerol was significantly (p < 0.05) reduced following exercise training (2.15 ± 0.29 vs. 1.55 ± 0.28 mmol · l−1). Very low density lipoprotein-triacylglycerol was also significantly (p < 0.05) reduced (1.82 ± 0.3 vs. 1.29 ± 0.29 mmol · l−1). No significant changes in high density lipoprotein-cholesterol were observed as a result of training. Following training fasting plasma glucose and fasting plasma insulin were significantly reduced [Glucose: 5.9 (0.2) mmol · l−1 vs. 5.3 (0.22) mmol · l−1 (p < 0.05); Insulin 264.3 (53.8) ρ · mol · l−1 vs. 200.9 (30.1) ρ · mol · l−1, p = 0.05]. The total area under the glucose curve during the OGTT decreased significantly (p < 0.05). These preliminary data suggest that short-term exercise, without concomitant loss of body mass, induces favorable changes in plasma triacylglycerol, and very low density lipoprotein-triacylglycerol and glucose tolerance but has no effect on high density lipoproteincholesterol. Accepted: 7 January 1998  相似文献   

11.
Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1–1.6 times body mass and 0.8–1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg−0.75 · day−1 to 1767.3 kJ · kg−0.75 · day−1 for A. jamaicensis and 1282.6–1545.2 kJ · kg−0.75 · day−1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6–5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N · g−1 and 0.756 mg N · g−1 dry matter intake and endogenous urinary N losses were 163.31 mg N · kg−0.75 · day−1 and 71.54 mg N · kg−0.75 · day−1. A. jamaicensis required 332.3 mg · kg−0.75 · day−1 and 885.3 mg · kg−0.75 · day−1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg−0.75 · day−1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g−1 dry matter intake and 96.0 mg N · kg−0.75 · day−1, respectively, and bats required 529.8 mg · kg−0.75 · day−1 (total N) or 284.0 mg · kg−0.75 · day−1 (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet. Accepted: 24 November 1998  相似文献   

12.
Summary

Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (5–8-BendiFA), (Z)-β-(4-[(E)-2-carboxyvinyl]-2-methoxy-phenoxy)-4-hydroxy-3-methoxycinnamic acid (8-O-4-diFA) and (E,E)-4,4′-dihydroxy-5,5′-dimethoxy-3,3′-bicinnamic acid (5–5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxylic acid (8–8-diFA cyclic form) and 4,4′-dihydroxy-3,3′-dimethoxy-β,β'-bicinnamic acid (8–8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: λmax: 323 nm, λmin: 258 nm, ελmax (M?1cm?1): 24800 ± 2100 and ε280 (M?1cm?1): 19700 ± 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.  相似文献   

13.
Six new protopanaxadiol-type ginsenosides, named ginsenosides Ra(4) -Ra(9) (1-6, resp.), along with 14 known dammarane-type triterpene saponins, were isolated from the root of Panax ginseng, one of the most important Chinese medicinal herbs. The structures of the new compounds were determined by spectroscopic methods, including 1D- and 2D-NMR, HR-MS, and chemical transformation as (20S)- 3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (1), (20S)-3-O-[β-D-6-O-acetylglucopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (2), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (3), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (4), (20S)-3-O-{β-D-4-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (5), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (6). The sugar moiety at C(3) of the aglycone of each new ginsenoside is butenoylated or acetylated.  相似文献   

14.
Ten minutes after uptake of 2,4-dichlorophenoxyacetic acid-1-14C(2,4-D-1-14C) by excised Ribes sativum leaves, 37·8 % of the radioactivity in water-soluble metabolites was in glyoxylic acid. When 2,4-D- 2-14C was supplied under the same conditions, 23·0 % of the radioactivity of the water-soluble rnetabolites was in glyoxylic acid. Radioactive glycine and glyoxylic acid, isolated from Ribes sativum 6 hr after uptake of 2,4-D-1-14C, contained essentially all of the 14C in the carboxyl-carbon atoms. When 2,4-D-2-14C was the precursor, the glycine isolated contained 64·8 % of its radioactivity in C2, while 60·0 % of the radioactivity in glyoxylic acid was in C2. The side-chain label of 2,4-D-2-14C-4-36Cl was more efficiently incorporated into ethanol-insoluble plant residue than the ring-label. The metabolism of glyoxylic acid-1-14C and 2,4-D-1-14C in excised Ribes sativum leaves were compared. The data suggest a cleavage of the acetate-moiety of 2,4-D resulting in a C2 compound, perhaps glyoxylate.  相似文献   

15.
The reaction mechanisms involved in the scavenging of hydroxyl (OH·), methoxy (OCH3 ·), and nitrogen dioxide (NO2 ·) radicals by ellagic acid and its monomethyl and dimethyl derivatives were investigated using the transition state theory and density functional theory. The calculated Gibbs barrier energies associated with the abstraction of hydrogen from the hydroxyl groups of ellagic acid and its monomethyl and dimethyl derivatives by an OH· radical in aqueous media were all found to be negative. When NO2 · was the radical involved in hydrogen abstraction, the Gibbs barrier energies were much larger than those calculated when the OH· radical was involved. When OCH3 · was the hydrogen-abstracting radical, the Gibbs barrier energies lay between those obtained with OH· and NO2 · radicals. Therefore, the scavenging efficiencies of ellagic acid and its monomethyl and dimethyl derivatives towards the three radicals decrease in the order OH· >> OCH3 · > NO2 ·. Our calculated rate constants are broadly in agreement with those obtained experimentally for hydrogen abstraction reactions of ellagic acid with OH· and NO2· radicals.
Figure
Reactant complex (RC), transition state (TS), and product complex (PC) for hydrogen abstraction from ellagic acid by an OH· radical  相似文献   

16.
Thiol and aminothiol compounds are among the most efficient chemical radioprotectors. To increase their efficiency, we synthesized two new classes of thiol and aminothiol compounds derived from benzothiazole (T1, T2, AM1, AM2) and thiadiazole (T3, T4, AM3) structures. We examined them for their ability to scavenge free radicals (DPPH·, ABTS·+, ·OH). Thiol derivatives with a thiadiazole structure are the most active compounds scavenging DPPH· and ABTS·+ free radicals, with an IC50 of 0.053 ± 0.006 and 0.023 ± 0.002 mM, respectively, for the derivative T3. Moreover, compounds T1, T2, and T3 at 60 μM gave 83% protection against 2-deoxyribose degradation by ·OH. The ability of these compounds to protect DNA against ·OH produced by a Fenton reaction and γ-irradiation (15 Gy)-induced strand breaks was also evaluated on pBR322 plasmid DNA. In both tests thiol derivatives were the most efficient compounds. Derivatives T2 and T3 totally inhibit DNA strand breaks at the concentration of 50 μM. The protection afforded by these derivatives was comparatively higher than that of the radioprotectors WR-2721 and WR-1065. Our data indicate that these two compounds are free radical scavengers and potential antioxidant agents. Finally, DFT and QSAR studies were performed to support the experimental observations.  相似文献   

17.
Phytochemical investigations were performed on the EtOAc-soluble fraction of the whole plant of the sky flower (Duranta repens) which led to the isolation of the iridoid glycosides 16. Their structures were elucidated by both 1D and 2D NMR spectroscopic analysis. All the compounds showed potent antioxidative scavenging activity in four different tests, with half maximal inhibitory concentration (IC50) values in the range 0.481–0.719?mM against DPPH radicals, 4.07–17.21 µM for the hydroxyl radical (?OH) inhibitory activity test, 43.3–97.37 µM in the total reactive oxygen species (ROS) inhibitory activity test, and 3.39–18.94 µM in the peroxynitrite (ONOO?) scavenging activity test. Duranterectoside A (1) displayed the strongest scavenging potential with IC50 values of (0.481?±?0.06?mM, 4.07?±?0.03, 43.30?±?0.05, 3.39?±?0.02?µM) for the DPPH radicals, ?OH inhibitory activity test, total ROS inhibitory activity test and the ONOO? scavenging activity test, respectively.  相似文献   

18.
Phytochemical investigations on the n-BuOH-soluble fraction of the whole plant of Buddleja davidii led to the isolation of the phenylpropanoid glycosides 1-10. Their structures were determined by 1D and 2D NMR spectroscopic techniques. All the compounds showed potent antioxidative activity in three different tests, with IC50 values in the range 4.15-9.47 μM in the hydroxyl radical (˙OH) inhibitory activity test, 40.32-81.15 μM in the total ROS (reactive oxygen species) inhibitory activity test, and 2.26-7.79 μM in the peroxynitrite (ONOO?) scavenging activity test. Calceolarioside A (1) displayed the strongest scavenging potential with IC50 values of (4.15?±?0.07, 40.32?± 0.09, 2.26?±?0.03μM) for ˙OH, total ROS and scavenging of ONOO?, respectively.  相似文献   

19.
Two arbutin glucosides were synthesized via the acceptor reaction of a glucansucrase from Leuconostoc mesenteroides B-1299CB with arbutin and sucrose. The glucosides were purified by Bio-gel P-2 column chromatography and high-performance liquid chromatography, and the structures were elucidated as 4-hydroxyphenyl β-isomaltoside (arbutin-G1), 4-hydroxyphenyl β-isomaltotrioside (arbutin-G2), according to the results of 1H, 13C, heteronuclear single-quantum coherence, 1H-1H COSY, and heteronuclear multiple-bond correlation analyses. Arbutin glucoside (4-hydroxyphenyl β-isomaltoside) exhibited slower effects on 1,1-diphenyl-2-picrylhydrazyl radical scavenging and similar effects on tyrosinase inhibition, and increased inhibitory effect on matrix metalloproteinase-1 production induced by UVB than arbutin. Young Hwan Moon and Seung Hee Nam contributed equally to this work.  相似文献   

20.
N-acetyl-5-methoxytryptamine or melatonin is a multifunctional molecule. The main physiological function, at least in vertebrates, is to transduce to the animal the photoperiodic information and regulate rhythmic parameters. But studies have also observed the action of this molecule on pigment migration in ectothermic vertebrates. Thus the aim of this paper was to investigate in vivo and in vitro the influence of melatonin on the pigment migration in melanophores of the crab Neohelice granulate. Injections of melatonin (2 × 10−9 moles · crab−1) at 07:00 h or 19:00 h did not affect (p > 0.05) the circadian pigment migration of the melanophores in constant darkness. Additionally no significant pigment migration (p > 0.05) was verified in normal and eyestalkless crabs injected with melatonin (10−10–10−7 moles · crab−1) during the day or night. In the in vitro assay, the response of melanophores to the pigment-dispersing hormone in eyestalkless crabs injected with melatonin (2 × 10−9 moles · crab−1) 1 and 12 hours before the observations did not differ (p > 0.05) from the control group (injected with physiological solution). These results suggest that melatonin does not act as a signaling factor for pigment dispersion or aggregation in the melanophores of N. Granulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号