首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
以一株产绿原酸的内生枯草芽孢杆菌为基础,对其绿原酸途径的关键酶基因进行克隆和功能研究。克隆该内生菌的细胞色素P450基因并进行原核表达,对重组蛋白进行肉桂酸羟基化酶(C4H)酶活测定。结果显示,从内生菌中克隆了4个细胞色素P450酶系基因并进行了原核表达,其中P-4重组蛋白具有C4H活性,产生的香豆酸与LC-MS检测的结果一致,该酶的最适温度范围较宽,产物香豆酸对该酶有抑制作用。该内生菌可能利用其细胞色素P450酶系作为C4H的同工酶从而将产物导入绿原酸合成途径。  相似文献   

2.
利用基因重组技术 ,在大肠杆菌中克隆并表达苯丙氨酸脱氨酶 (PAL) (EC4 .3 .1 .5) ,并应用此酶转化肉桂酸生成L 苯丙氨酸。方法是将欧芹苯丙氨酸脱氨酶cDNA亚克隆到组成型表达载体pMG3 6e启动子P3 2下游 ,以菌落PCR法鉴定插入片段的大小和方向都正确的克隆 ,进而以HPLC检测肉桂酸浓度的方法鉴别重组质粒有催化肉桂酸生成L 苯丙氨酸的酶活力。结果获得能表达PAL酶活性的阳性克隆 ,在pH1 0 ,含 1 .0 %肉桂酸、8.0mol/L氨的转化液中 ,3 0℃反应 2 0h ,肉桂酸重量转化率可达 60 %。该基因工程菌有希望用于工业化生产L 苯丙氨酸。  相似文献   

3.
反应条件下苯丙氨酸解氨酶的活力稳定性   总被引:2,自引:0,他引:2  
在苯丙氨酸解氨酶(PAL)的作用下由肉桂酸和氨合成L-苯丙氨酸(L-Phe)是酶法合成该氨基酸的重要途径,国外已利用该途径进行L-苯丙氨酸的工业生产,但是该过程仍存在着转化率低和酶活力稳定性差的问题。为解决这些问题,有必要在现有基础上开展提高酶活力稳定性的研究。  相似文献   

4.
【目的】以疏花水柏枝(Myricaria laxiflora)淹水前根部分离到的内生真菌SG17为研究对象,为明确其抗氧化能力及可能的物质基础,对其进行生物学鉴定、抗氧化能力分析及产酚酸类物质研究。【方法】对该菌nr DNA的内转录间隔区进行测序;应用总抗氧化试剂盒,以维生素C为阳性对照,测定其抗氧化能力;采用高效液相色谱(HPLC)和薄层色谱(TLC)探讨其发酵液中的酚酸类化合物。【结果】SG17具有很高的抗氧化活性,其发酵液粗提物的抗氧化活性达到同浓度抗坏血酸的31.86%,分子和形态鉴定表明SG17是一株烟曲霉(Aspergillus fumigatus)。其发酵产物中酚酸类物质含量丰富,HPLC能检测到含有没食子酸,且通过HPLC和TLC分析还发现一种光学性质与绿原酸极为相似的类似物。【结论】内生真菌烟曲霉SG17发酵液的抗氧化能力远高于国际报道水平,是一种具有潜在开发价值的抗氧化剂资源。  相似文献   

5.
淡紫灰链霉菌gCLA4坏死诱导蛋白基因的克隆表达及功能   总被引:1,自引:0,他引:1  
【背景】淡紫灰链霉菌(Streptomyceslavendulae)gCLA4是从黄瓜中分离到的一株放线菌,研究表明该菌对多种植物病原菌均有很好的拮抗作用,具有潜在的生防价值。【目的】深入研究Streptomyces lavendulae gCLA4中坏死诱导蛋白(necrosis-inducing protein) 4955的功能,明确其提高植物抗性的作用机制。【方法】对坏死诱导蛋白4955基因进行克隆,于Escherichia coli BL21(DE3)中表达,并以烟草为材料检测该蛋白的活性和稳定性;使用Protparam、PredictProtein、NCBI CDD、SWISS-MODEL分析蛋白的基本性质和三维结构;检测该蛋白对烟草防御反应相关酶活(CAT、SOD、POD、PAL)和防御相关基因(NPR1、PR1-b、PAL、LOX、PR1-a)表达量的影响。【结果】蛋白4955的耐受温度达40°C,耐受pH 6.0-10.0。该蛋白分子量为24 491.12 Da,由225个氨基酸组成,其等电点为5.96,经氨基酸序列比对含保守NPP1结构域。蛋白4955处理烟草2 d时,烟草CAT、SOD、PAL酶活增加,POD酶活无显著变化。该蛋白处理烟草第1、3、5天时,基因PR1-b、LOX表达量提高;在第4天时,基因PAL的表达量提高。【结论】Streptomyces lavendulae gCLA4中的坏死诱导蛋白4955确实能诱导烟草中的植物防御反应。  相似文献   

6.
【目的】从野生蛇足石杉(Huperzia serrata)中分离筛选产石杉碱甲的内生真菌。【方法】采用薄层层析及高效液相色谱法对内生真菌代谢产物进行测定和分析以期分离获得产石杉碱甲菌株,运用形态及ITS序列分析方法对产石杉碱甲菌株进行鉴定,并利用连续传代方法考察菌株遗传稳定性。【结果】经筛选获得一株产石杉碱甲内生真菌NSH-5,经形态学鉴定及ITS序列分析鉴定为轮枝镰孢菌(Fusarium verticillioides),其石杉碱甲产量为11.76 mg/100 m L,菌株经20次连续传代后遗传稳定。【结论】NSH-5菌株为一株具有产石杉碱甲能力的轮枝镰孢菌,该菌株的发现为生物合成石杉碱甲提供了新的菌种资源。  相似文献   

7.
【背景】N-甲基-L-苯丙氨酸是一种N-烷基化芳香氨基酸,是重要的手性合成单元/中间体/组成成分,在医药、农业、食品等领域有重要应用价值的代谢产物中广泛存在。N-烷基化芳香氨基酸的合成与制备仍具有巨大的挑战。【目的】在研究加兰他敏的生物合成过程中,我们从产加兰他敏的红花石蒜中克隆并表征苯丙氨酸解氨酶LrPAL3。LrPAL3催化区域及对映选择性的氢胺化反应得到L-苯丙氨酸。通过生物信息学分析,推测LrPAL3可能催化反式-肉桂酸的一步N-甲基胺化反应得到N-甲基-L-苯丙氨酸。【方法】将反式-肉桂酸与甲胺,以及表达LrPAL3的大肠杆菌全细胞一起孵育。HPLC-DAD及HRESIMS分析表明,上述反应产物为N-甲基-苯丙氨酸。为确定该产物的立体构型,将上述催化反应放大,通过分离纯化得到该酶催化反应产物。【结果】该化合物的氢谱数据及比旋光数据与N-甲基-L-苯丙氨酸标准品的数据一致。由此说明,LrPAL3能够催化反式-肉桂酸和甲胺发生N-烷基胺化反应,区域和立体专一性地生成N-甲基-L-苯丙氨酸。【结论】本研究为手性N-烷基氨基酸的不对称合成提供了一种全新的绿色、高效生物催化剂。通过对LrPAL3的蛋白质定向进化及代谢工程,将会进一步扩展LrPAL3的催化反应范围,以多种N-烷基胺类及取代的苯基丙烯酸为底物,实现手性N-烷基-芳基氨基酸的高效区域及立体选择性生物合成。  相似文献   

8.
大熊猫肠道纤维素分解菌的分离鉴定及产酶性质   总被引:3,自引:0,他引:3  
【目的】从健康大熊猫新鲜粪便中分离具有纤维素酶活性的菌株,并对其进行菌种鉴定及产酶性质研究。【方法】利用羧甲基纤维素钠培养基分离纯化具有较高纤维素酶活性的菌株,根据形态学特征、生理生化特性以及16S rDNA分析对其进行分类鉴定,研究影响该菌株纤维素酶的产酶条件,以及对不同纤维素底物的降解情况。【结果】分离得到一株纤维素酶产生菌株P2,该菌株为好氧的革兰氏阳性细菌,生长温度范围20-50℃(最适温度37℃),pH范围6.0-9.0(最适pH7.0),NaCl浓度范围0%-15%(最适2%NaCl),培养24h达到产酶高峰。16S rDNA基因序列分析显示,菌株P2与解淀粉芽胞杆菌(Bacillusamyloliquefaciens)NBRC15535相似性为99.66%。该菌株对四种纤维素底物(滤纸、脱脂棉、秸秆、竹纤维)均有不同程度的降解,内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶和总酶活具有不同的酶活变化。【结论】本研究首次从大熊猫粪便中分离出了好氧纤维素分解菌,并鉴定为解淀粉芽胞杆菌,对上述四种纤维结构均有一定的破坏和分解作用,为进一步研究大熊猫竹纤维消化机制提供了菌源。  相似文献   

9.
【目的】从海洋样品中分离筛选出产葡萄糖氧化酶菌株。【方法】采用双层平板筛选法进行初筛、复筛确定一株酶活较好的菌株,命名为GOD2(Glucose oxidase)。通过形态学、生理生化特征及16S rRNA基因序列分析研究其分类地位,并对其产生的葡萄糖氧化酶进行分离纯化和部分酶学性质的研究。【结果】细菌GOD2为产葡萄糖氧化酶菌株且遗传稳定,初步鉴定该菌株为假单胞杆菌(Pseudomonas migulae),其所产酶最适反应温度为20°C,热稳定性较差,40°C剩余相对酶活80%;超过40°C酶活力迅速下降。【结论】GOD2是一株极具研究价值的产低温葡萄糖氧化酶菌株。目前没有关于利用该菌生产葡萄糖氧化酶的报道。  相似文献   

10.
苯丙氨酸代谢途径关键酶:PAL、C4H、4CL研究新进展   总被引:3,自引:0,他引:3  
李莉  赵越  马君兰 《生物信息学》2007,5(4):187-189
主要阐述了苯丙氨酸代谢途径中三种关键酶:苯丙氨酸解氨酶(PAL)、肉桂酸4-羟基化酶(C4H)、4-香豆酸辅酶A连接酶(4CL)的研究进展,希望能为研究植物次生代谢途径的研究工作者提供一些帮助。  相似文献   

11.
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and the C4H redox partner cytochrome p450 reductase (CPR) are important in allocating significant amounts of carbon from phenylalanine into phenylpropanoid biosynthesis in plants. It has been proposed that multienzyme complexes (MECs) containing PAL and C4H are functionally important at this entry point into phenylpropanoid metabolism. To evaluate the MEC model, two poplar PAL isoforms presumed to be involved in either flavonoid (PAL2) or in lignin biosynthesis (PAL4) were independently expressed together with C4H and CPR in Saccharomyces cerevisiae, creating two yeast strains expressing either PAL2, C4H and CPR or PAL4, C4H and CPR. When [(3)H]Phe was fed, the majority of metabolized [(3)H]Phe was incorporated into p-[(3)H]coumarate, and Phe metabolism was highly reduced by inhibiting C4H activity. PAL alone expressers metabolized very little phenylalanine into cinnamic acid. To test for intermediate channeling between PAL and C4H, we fed [(3)H]Phe and [(14)C]cinnamate simultaneously to the triple expressers, but found no evidence for channeling of the endogenously synthesized [(3)H]cinnamate into p-coumarate. Therefore, efficient carbon flux from Phe to p-coumarate via reactions catalyzed by PAL and C4H does not appear to require channeling through a MEC in yeast, and instead biochemical coupling of PAL and C4H is sufficient to drive carbon flux into the phenylpropanoid pathway. This may be the primary mechanism by which carbon allocation into phenylpropanoid metabolism is controlled in plants.  相似文献   

12.
Flavonoids are valuable natural products derived from the phenylpropanoid pathway. The objective of this study was to create a host for the biosynthesis of naringenin, the central precursor of many flavonoids. This was accomplished by introducing the phenylpropanoid pathway with the genes for phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides, 4-coumarate:coenzyme A (CoA) ligase (4CL) from Arabidopsis thaliana, and chalcone synthase (CHS) from Hypericum androsaemum into two Saccharomyces cerevisiae strains, namely, AH22 and a pad1 knockout mutant. Each gene was cloned and inserted into an expression vector under the control of a separate individual GAL10 promoter. Besides its PAL activity, the recombinant PAL enzyme showed tyrosine ammonia lyase activity, which enabled the biosynthesis of naringenin without introducing cinnamate 4-hydroxylase (C4H). 4CL catalyzed the conversion of both trans-cinnamic acid and p-coumaric acid to their corresponding CoA products, which were further converted to pinocembrin chalcone and naringenin chalcone by CHS. These chalcones were cyclized to pinocembrin and naringenin. The yeast AH22 strain coexpressing PAL, 4CL, and CHS produced approximately 7 mg liter(-1) of naringenin and 0.8 mg liter(-1) of pinocembrin. Several by-products, such as 2',4',6'-trihydroxydihydrochalcone and phloretin, were also identified. Precursor feeding studies indicated that metabolic flux to the engineered flavonoid pathway was limited by the flux to the precursor l-tyrosine.  相似文献   

13.
Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamate and ammonia. While PALs are common in terrestrial plants where they catalyze the first committed step in the formation of phenylpropanoids, only a few prokaryotic PALs have been identified to date. Here we describe for the first time PALs from cyanobacteria, in particular, Anabaena variabilis ATCC 29413 and Nostoc punctiforme ATCC 29133, identified by screening the genome sequences of these organisms for members of the aromatic amino acid ammonia lyase family. Both PAL genes associate with secondary metabolite biosynthetic gene clusters as observed for other eubacterial PAL genes. In comparison to eukaryotic homologues, the cyanobacterial PALs are 20% smaller in size but share similar substrate selectivity and kinetic activity toward L-phenylalanine over L-tyrosine. Structure elucidation by protein X-ray crystallography confirmed that the two cyanobacterial PALs are similar in tertiary and quatenary structure to plant and yeast PALs as well as the mechanistically related histidine ammonia lyases.  相似文献   

14.
Although both the structures and the reactions of histidine and phenylalanine ammonia lyases (HAL and PAL) are very similar, the former shows a primary kinetic deuterium (D) isotope effect, while the latter does not. In the HAL reaction, the release of ammonia is partially rate-determining and is slower than the release of the product (E)-urocanate (4), whereas in the PAL reaction, the release of (E)-cinnamate (2) is the rate-limiting step. With (2S,3S)-[3-(2)H1]phenylalanine (1a), we determined the kinetic D isotope effects with the PAL mutants Q487A, Y350F, L137 H, and the double mutant L137 H/Q487E. The kH/kD values for the former two were of the same magnitude as with wild-type PAL (1.20+/-0.07), while the exchange of L137 to H almost doubled the effect (kH/kD=2.32+/-0.01). We conclude that L137 is part of the hydrophobic pocket harboring the phenyl group of the substrate/product and is responsible for its strong binding. The stability of the HAL ammonia complex was demonstrated 40 years ago. Here, we show that, in contrast to the former assumption, ammonia in the complex is not covalently bound to the prosthetic electrophile, 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO; 5). We carried out experiments with a mutant enzyme lacking MIO and exhibiting ca. 10(3) times less activity. Nevertheless, the enzyme-ammonia complex was formed, and the mutant behaved upon addition of (E)-[14C]urocanate (4a) like wild-type HAL. We conclude, therefore, that ammonia is bound in the complex by Coulomb forces as ammonium ion and can be released only after (E)-urocanate (4).  相似文献   

15.
To investigate the lignifications process and its physiological significance under Karnal Bunt (KB), the changes in enzymes responsible for lignifications likes, phenylalanine ammonia lyase (PAL), were determined in resistant (HD-29) and susceptible genotype (WH-542) of wheat during different developmental stages. The PAL gene was cloned and sequenced. The expression of PAL gene was measured by means of semi-quantitative RT-PCR. The enzyme was expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL was significantly higher in WSv stage (Z=16). Structural comparisons based on alignments of all the protein sequences using the clustal W program and searches for conserved motifs using the MEME program have revealed broad conservation of main motifs characteristic of the plant PAL. MSA and phylogenetic analyses of different plants PAL demonstrate that all PAL cluster divided in to two main cluster. The PAL also possesses a specific consensus sequences [GS]- [STG]-[LIVM]-[STG]-[SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-x(2,3)-[SAGVTL]. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of Phenyl propanoid pathway metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.  相似文献   

16.
The first three-dimensional structure of phenylalanine ammonia lyase (PAL) has been determined at 2.1 A resolution for PAL from Rhodosporidium toruloides. The enzyme is structurally similar to the mechanistically related histidine ammonia lyase (HAL), with PAL having an additional approximately 160 residues extending from the common fold. We propose that catalysis (including lowering the pK(a) of nonacidic C3 of l-phenylalanine for an E1cb mechanism) is potentially governed by dipole moments of seven alpha helices associated with the PAL active site (six positive poles and one negative pole). Cofactor 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) resides atop the positive poles of three helices, for increasing its electrophilicity. The helix dipoles appear fully compatible with a model of phenylalanine docked in the active site of PAL having the first covalent bond formed between the amino group of substrate and the methylidene group of MIO: 12 highly conserved residues (near the N termini of helices for enhancing function) are poised to serve roles in substrate recognition, MIO activation, product separation, proton donation, or polarizing electrons from the phenyl ring of substrate for activation of C3; and a highly conserved His residue (near the C terminus of the one helix that directs its negative pole toward the active site to increase the residue's basicity) is positioned to act as a general base, abstracting the pro-S hydrogen from C3 of substrate. A similar mechanism is proposed for HAL, which has a similar disposition of seven alpha helices and similar active-site residues. The helix dipoles appear incompatible with a proposed mechanism that invokes a carbocation intermediate.  相似文献   

17.
The activities of phenylalanine ammonia lyase [PAL; EC 4.3.1.5 [EC] ]and chalcone isomerase [Cl; EC 5.5.1.5 [EC] ] as well as the contentsof anthocyanin and total soluble hydroxyphenolic compounds wereinvestigated in maize (Zea mays L.) and soybean (Glycine maxL.) seedlings 120 h after treatment with the field dose of fiveherbicides from different groups (trifluralin, fluometuron,atrazine, alachlor, and rimsulfuron) having varied modes ofaction. The fresh weight of both species was greatly decreasedby trifluralin followed by fluometuron and atrazine. The dryweight was, in general, only slightly decreased by all the herbicideswith the largest response with trifluralin. On the other hand,the activities of PAL and Cl were greatly enhanced in both speciesby alachlor and rimsulfuron, but decreased by trifluralin. Fluometuroninduced decreases in PAL activity of maize only and decreasedCl activity of maize and soybean seedlings. Moreover, hydroxyphenoliccompounds were increased in both species by alachlor and rimsulfuronand decreased by trifluralin and atrazine. Similarly, anthocyanincontent was increased in both seedlings by alachlor and rimsulfuron,but decreased by trifluralin and fluometuron, whereas atrazinedecreased the anthocyanin content in maize only. The presentresults indicate that stress is maintained by the differentherbicides and confirm the controlling action of PAL and Clon the production of anthocyanin and phenolic compounds duringthe induced state of stress. In addition, dry weight reductionappeared to coincide with the changes in the parameters of secondarymetabolism, suggesting a regulatory role of secondary metabolismon seedling growth. Key words: Herbicides, phenylalanine ammonia lyase, chalcone isomerase, anthocyanin, hydroxyphenolics  相似文献   

18.
Both phenylalanine ammonia lyase and tyrosine ammonia lyase were detected in tobacco (Nicotiana tabacum L. Wisconsin 38) callus. The enzymes were separated from each other by Sephadex G-200 column chromatography. Increased activity of tyrosine ammonia lyase was observed during culture of tobacco callus under shoot-forming conditions, while activity of phenylalanine ammonia lyase increased during culture under non-organ-forming conditions. Confirmation of these findings was obtained by examining the incorporation of [14C]tyrosine and [14C]phenylalanine into p-coumarate and trans-cinnamate, respectively.  相似文献   

19.
Activities of phenylalanine (Phe) biosynthetic enzymes chorismate mutase (CM) and arogenate dehydratase (ADT) and of phenylalanine ammonia lyase [PAL, an enzyme that directs Phe towards capsaicinoid (CAP) synthesis] were analyzed during Capsicum chinense Jacq. (habanero pepper) fruit development. A maximum CM activity coincided with a maximum CAP accumulation. However, ADT exhibited two activity peaks, one during the early phase (10 - 17 days post-anthesis, DPA) and another during the late phase (35 - 37 DPA); only the latter coincided with CAP. Interestingly, PAL activity was inversely related to CAP accumulation; lower activities coincided with a maximum CAP content. These results suggest the operation of a control mechanism that coordinated Phe synthesis and its channeling towards CAP synthesis during the course of fruit development.  相似文献   

20.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号