首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 102 to 106 cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.  相似文献   

2.
To identify the bacteria that play a major role in the aerobic degradation of petroleum polynuclear aromatic hydrocarbons (PAHs) in a marine environment, bacteria were enriched from seawater by using 2-methylnaphthalene, phenanthrene, or anthracene as a carbon and energy source. We found that members of the genus Cycloclasticus became predominant in the enrichment cultures. The Cycloclasticus strains isolated in this study could grow on crude oil and degraded PAH components of crude oil, including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. To deduce the role of Cycloclasticus strains in a coastal zone oil spill, propagation of this bacterial group on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks that were 1 m wide by 1.5 m long by 1 m high. The tanks were two-thirds filled with gravel, and seawater was continuously introduced into the tanks; the water level was varied between 30 cm above and 30 cm below the surface of the gravel layer to simulate a 12-h tidal cycle. The number of Cycloclasticus cells associated with the grains was on the order of 10(3) cells/g of grains before crude oil was added to the tanks and increased to 3 x 10(6) cells/g of grains after crude oil was added. The number increased further after 14 days to 10(8) cells/g of grains when nitrogen and phosphorus fertilizers were added, while the number remained 3 x 10(6) cells/g of grains when no fertilizers were added. PAH degradation proceeded parallel with the growth of Cycloclasticus cells on the surfaces of the oil-polluted grains of gravel. These observations suggest that bacteria belonging to the genus Cycloclasticus play an important role in the degradation of petroleum PAHs in a marine environment.  相似文献   

3.
Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass.  相似文献   

4.
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas , Halomonas , Marinobacter , Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus , Alteromonas , Thalassospira , Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.  相似文献   

5.
Fluorescent antibody (FA) was prepared for a methanogenic bacterium isolated from Wintergreen Lake pelagic sediment. The isolate resembles Methanobacterium formicicum. The FA did not cross-react with 9 other methanogens, including M. formicicum strains, or 24 heterotrophs, 18 of which had been isolated from Wintergreen Lake sediment. FA-reacting methanogens were detected in heat-fixed smears of several different lake sediments and anaerobic sewage sludge. Pretreatment of all samples with either rhodamine-conjugated geletin or bovine serum albumin adequately controlled nonspecific absorption of the FA. Autofluorescent particles were observed in the sediment samples but, with experience, they could easily be distinguished from FA-reacting bacteria. FA direct counts of the specific methanogen in Wintergreen Lake sediments were made on four different sampling dates and compared with five-tube most-probable-number estimates of the total methanogenic population that was present in the same samples. The FA counts ranged from 3.1 X 10(6) to 1.4 X 10(7)/g of dry sediment. The highest most-probable-number estimates were at least an order ofmagnitude lower.  相似文献   

6.
Fluorescent antibody (FA) was prepared for a methanogenic bacterium isolated from Wintergreen Lake pelagic sediment. The isolate resembles Methanobacterium formicicum. The FA did not cross-react with 9 other methanogens, including M. formicicum strains, or 24 heterotrophs, 18 of which had been isolated from Wintergreen Lake sediment. FA-reacting methanogens were detected in heat-fixed smears of several different lake sediments and anaerobic sewage sludge. Pretreatment of all samples with either rhodamine-conjugated geletin or bovine serum albumin adequately controlled nonspecific absorption of the FA. Autofluorescent particles were observed in the sediment samples but, with experience, they could easily be distinguished from FA-reacting bacteria. FA direct counts of the specific methanogen in Wintergreen Lake sediments were made on four different sampling dates and compared with five-tube most-probable-number estimates of the total methanogenic population that was present in the same samples. The FA counts ranged from 3.1 X 10(6) to 1.4 X 10(7)/g of dry sediment. The highest most-probable-number estimates were at least an order ofmagnitude lower.  相似文献   

7.
A pyrene-degrading bacterial consortium was obtained from deep-sea sediments of the Pacific Ocean. The consortium degraded many kinds of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, pyrene, acenaphthene, fluorene, anthracene, fluoranthene, 2-methylnaphthalene and 2,6-dimethylnaphthalene, but it did not grow with chrysene and benzo[alpha]pyrene. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 72 bacteria belonging to 22 genera were detected from this consortium. Among the detected bacteria, the following genera frequently occurred: Flavobacterium, Cycloclasticus, Novosphingobium, Halomonas, Achromobacter, Roseovarius and Alcanivorax. The first two genera showed the strongest bands in denaturing gradient gel electrophoresis (DGGE) profiles and appeared in all PAH treatments. By now, only one isolate designated P1 was confirmed to be a pyrene degrader. It was identified to be Cycloclasticus spirillensus (100%). Although P1 can degrade pyrene independently, other bacteria, such as Novosphingobium sp. (Band 14), Halomonas sp. (Band 16) and an unidentified bacterium (Band 35), were involved in pyrene degradation in some way; they persist in the consortium in the test of dilution to extinction if only the consortium was motivated with pyrene. However, the secondary most important member Flavobacterium sp. evaded from the community at high dilutions. As a key member of the consortium, P1 distinguished itself by both cell morphology and carbon source range among the isolates of this genus. Based on intermediate analyses of pyrene degradation, P1 was supposed to take an upper pathway different from that previously reported. Together with the results of obtained genes from P1 homology with those responsible for naphthalene degradation, its degradation to pyrene is supposed to adopt another set of genes unique to presently detected. Summarily, an efficient pyrene-degrading consortium was obtained from the Pacific Ocean sediment, in which Cycloclasticus bacterium played a key role. This is the first report to exploit the diversity of pyrene-degrading bacteria in oceanic environments.  相似文献   

8.
Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and HALOMONAS: This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments.  相似文献   

9.
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 × 105 to 5 × 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population.  相似文献   

10.
陈亮  董纯明  何进  邵宗泽 《微生物学报》2010,50(10):1392-1398
摘要:【目的】为了分析厦门近海原位海水中多环芳烃降解菌的多样性。【方法】将涂有菲的聚氯乙烯(PVC)板悬挂在厦门国际邮轮码头的海水中,进行菲降解菌的原位富集。利用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)和16S rRNA基因文库两种方法分析了在PVC板表面富集微生物的菌群结构。之后,在实验室模拟原位条件下,对PVC板表面富集的菲降解菌群进行进一步富集、分离和初步鉴定。【结果】PVC板在海水中浸没6 d后,16S rRNA基因文库分析表明,在涂菲的PVC板表面富集的菌群中解环菌属(Cycloclasticus)对应的克隆子占文库总克隆子的50%;在未涂菲的PVC板表面吸附的菌群中红杆菌科(Rhodobacteraceae)为优势菌,其对应的克隆子占文库总克隆子的47%;而解环菌属的克隆子只占文库总克隆子的2%。DGGE的分析结果也证明解环菌是菲原位富集降解菌群中的优势菌。实验室进一步富集后,从该菌群中分离鉴定出14株细菌,其中一株新鞘氨醇杆菌B14(Novosphingobium sp.B14)具有菲降解能力。但是,解环菌未能获得纯培养。【结论】菲原位富集发现,厦门近海水体中解环菌是多环芳烃的主要降解菌。  相似文献   

11.
The aerobic polyaromatic hydrocarbon (PAH) degrading microbial communities of two petroleum-impacted Spartina-dominated salt marshes in the New York/New Jersey Harbor were examined using a combination of microbiological, molecular and chemical techniques. Microbial isolation studies resulted in the identification of 48 aromatic hydrocarbon-degrading bacterial strains from both vegetated and non-vegetated marsh sediments. The majority of the isolates were from the genera Paenibacillus and Pseudomonas. Radiotracer studies using 14C-phenanthrene and 14C-pyrene were used to measure the PAH-mineralization activity in salt marsh sediments. The results suggested a trend towards increased PAH mineralization in vegetated sediments relative to non-vegetated sediments. This trend was supported by the enumeration of PAH-degrading bacteria in non-vegetated and vegetated sediment using a Most Probable Numbers (MPN) technique, which demonstrated that PAH-degrading bacteria existed in non-vegetated and vegetated sediments at levels ranging from 102 to 105 cells/g sediment respectively. No difference between microbial communities present in vegetated versus non-vegetated sediments was found using terminal restriction fragment length polymorphism (of the 16S rRNA gene) or phospholipid fatty acid analysis. These studies provide information on the specific members and activity of the PAH-degrading aerobic bacterial communities present in Spartina-dominated salt marshes in the New York/New Jersey Harbor estuary.  相似文献   

12.
The character of polycyclic aromatic hydrocarbons (PAH) in sediments of the Thea Foss and Wheeler-Osgood Waterways in Tacoma, Washington, were investigated with the objective of determining the general source(s) of these compounds to the waterways. In this study, 42 near-surface sediment samples from the Waterways were collected and analyzed for their (1) concentration of 43 individual or groups of PAH, (2) total extractable hydrocarbon “fingerprint” and concentration, (3) grain size and (4) total organic carbon content. Analysis of the sediment data, including comparisons to standard reference materials, indicates that all but two samples contained PAH derived from a pyrogenic source(s), i.e., a non-petroleum source(s). The high concentrations and characteristic distributions of PAH in some sediment samples were consistent with the occurrence of manufactured gas plant (MGP) derived tar(s) or tar distillate(s), particularly in some sediments proximal to a historic MGP and tar distillate storage operation near the head of the Thea Foss Waterway. Most other sediment samples throughout the Waterways contained PAH distributions and concentration indicating (at least) a greater proportion of PAH are derived from urban runoff/fallout.  相似文献   

13.
Survival of Escherichia coli in lake bottom sediment.   总被引:8,自引:6,他引:2       下载免费PDF全文
The survival of Escherichia coli in bottom sediment (Lake Onalaska, navigation pool no. 7, Mississippi River) was studied by using in situ dialysis culture of sterile (autoclaved) and unsterile sediment samples. Bags made from dialysis tubing were filled with either course sand sediment (28.8% fine) or organic, silty clay sediment (77.2% fine) and placed at the sediment-water interface. Bags representing sterile controls, unsterile uninoculated controls, autoclaved inoculated sediment, and unsterile inoculated sediment were studied during a 5-day period for each sediment type. Daily most-probable-number determinations indicated that E. coli populations in unsterile inoculated sediment fluctuated between 5.3 X 10(2) and 2.2 X 10(3) bacteria per g of silty clay and between 3.0 X 10(3) and 1.4 X 10(4) bacteria per g of sand. Autoclaved silty clay sediment inoculated with 1.0 X 10(6) bacteria per g increased to 2.2 X 10(8) bacteria per g in 3 days. During the same period, autoclaved sand sediment inoculated with 1.2 X 10(5) cells per g increased to 5.4 X 10(7) bacteria per g. By day 5, populations in both cultures had decreased by 1 log. The ability of E. coli to survive for several days in aquatic sediment in situ suggests that fecal coliforms in water may not always indicate recent fecal contamination of that water but rather resuspension of viable sediment-bound bacteria.  相似文献   

14.
Indigenous bacteria with the capability to degrade polycyclic aromatic hydrocarbons (PAH) were isolated from polluted sediment samples recovered from Caleta Cordova by using selective enrichment cultures supplemented with phenanthrene. Bacterial communities were evaluated by denaturing gradient gel electrophoresis (DGGE) in order to detect changes along enrichment culture and relationships with the representative strains subsequently isolated. Members of these communities included marine bacteria such as Lutibacter, Polaribacter, Arcobacter and Olleya, whose degradation pathway of PAH has not been studied yet. However, isolated bacteria obtained from this enrichment comprised the genus Pseudomonas, Marinobacter, Salinibacterium and Brevibacterium. The ability of isolates to grow and degrade naphthalene, phenanthrene and pyrene was demonstrated by detection of the residual substrate by HPLC. Archetypical naphthalene and catechol dioxygenase genes were found in two isolates belonging to genus Pseudomonas (Pseudomonas monteilii P26 and Pseudomonas xanthomarina N12), suggesting biodegradation potential in these sediments. The successful bacterial isolation with the ability to degrade PAH in pure culture suggest the possibility to study and further consider strategies like growth stimulation in situ, in order to increase the intrinsic bioremediation opportunities in the polluted Caleta Cordova harbor.  相似文献   

15.
Here we report on the biodiversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in sediment samples from the Xinyi River, Jinagsu Province (China). The biodiversity of aerobic ammonium-oxidizing bacteria in the sediment was assessed using the amoA gene as functional marker. The retrieved amoA clones were affiliated to environmental sequences from freshwater habitats. The closest cultivated relative was Nitrosomonas urea. Anaerobic ammonium-oxidizing (anammox) bacteria were studied using anammox and planctomycete-specific 16S rRNA gene primers. The sediments contained 16S rRNA genes and bacterial cells closely related to the known anammox bacterium Candidatus'Brocadia anammoxidans'. Anaerobic continuous flow reactors were set up to enrich anammox organisms from the sediments. After an adaptation period of about 25 days the reactors started to consume ammonium and nitrite, indicating that the anammox reaction was occurring with a rate of 41-58 nmol cm(-3) h(-1). Community analysis of the enrichments by quantitative fluorescence in situ hybridization showed an increase in the abundance of anammox bacteria from < 1% to 6 +/- 2% of the total population. Analysis of the 16S rRNA genes showed that the enriched anammox organisms were related to the Candidatus'Scalindua' genus.  相似文献   

16.
There are many PAH-degrading bacteria in mangrove sediments and in order to explore their degradation potential, surface sediment samples were collected from a mangrove area in Fugong, Longhai, Fujian Province of China. A total of 53 strains of PAH-degrading bacteria were isolated from the mangrove sediments, consisting of 14 strains of phenanthrene (Phe), 13 strains of pyrene (Pyr), 13 strains of benzo[a]pyrene (Bap) and 13 strains of mixed PAH (Phe + Pyr + Bap)-degrading bacteria. All of the individual colonies were identified by 16S rDNA sequencing. Based on the information of bacterial PCR-DGGE profiles obtained during enrichment batch culture, Phe, Pyr, Bap and mixed PAH-degrading consortia consisted of F1, F2, F3, F4 and F15 strains, B1, B3, B6, B7 and B13 strains, P1, P2, P3, P5 and P7 strains, M1, M2, M4, M12 and M13 strains, respectively. In addition, the degradation ability of these consortia was also determined. The results showed that both Phe and mixed PAH-degrading consortia had the highest ability to degrade the Phe in a liquid medium, with more than 91% being degraded in 3 days. But the biodegradation percentages of Pyr by Pyr-degrading consortium and Bap by Bap-degrading consortium were relatively lower than that of the Phe-degrading consortium. These results suggested that a higher degradation of PAHs depended on both the bacterial consortium present and the type of PAH compound. Moreover, using the bacterial community structure analysis method, where the consortia consist of different PAH-degrading bacteria, the information from the PCR-DGGE profiles could be used in the bioremediation of PAHs in the future.  相似文献   

17.
Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents.  相似文献   

18.
The community structure of sulfate-reducing bacteria in littoral and profundal sediments of the oligotrophic Lake Stechlin (Germany) was investigated. A collection of 32 strains was isolated from the highest positive dilutions of most-probable-number series, and their partial 16S rRNA gene sequences and genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-PCR were analyzed. The strains fell into eight distinct phylogenetic lineages, and the majority (70%) showed a close affiliation to the genus Desulfovibrio. Most of the remaining strains (22%) were related to the gram-positive Sporomusa and Desulfotomaculum groups. A high redundancy of 16S rRNA gene sequences was found within several of the phylogenetic lineages. This low phylogenetic diversity was most pronounced for the subset of strains isolated from oxic sediment layers. ERIC-PCR revealed that most of the strains with identical 16S rRNA gene sequences were genetically different. Since strains with identical 16S rRNA gene sequences but different genomic fingerprints also differed considerably with respect to their physiological capabilities, the high diversity detected in the present work is very likely of ecological relevance. Our results indicate that a high diversity of sulfate-reducing bacterial strains can be recovered from the natural environment using the established cultivation media. Received: 20 April 1998 / Accepted: 12 June 1998  相似文献   

19.
We assessed the desorption behavior of pyrene, chrysene, phenanthrene, and tri-alkylated (C3) phenanthrene/anthracenes for non-vegetated and recently vegetated (< 2 yrs) fuel-oiled sediments collected from the Indiana Harbor Canal (IHC), Gary, IN. Bulk sediment and humin were analyzed for PAH concentrations, organic matter composition, and PAH desorption behavior. PAH desorption isotherms and kinetics were determined using batch aqueous extractions and a two compartment, first-order kinetic model. Vegetated sediments contained more plant carbon and were more nonpolar and less oxidized than non-vegetated sediments. Desorption kinetics indicated that PAH desorption was primarily controlled by a slow PAH-desorbing fraction (F2) of IHC sediments. However, in vegetated sediments, particularly humin, PAH release from a faster PAH-desorbing fraction (F1) increased as did the rates (k2) of PAH desorption from the dominant slow PAH-desorbing fraction (F2). We propose that vegetation provides aliphatic, nonpolar carbon to IHC sediments that facilitates more rapid PAH desorption from bulk sediment and humin.  相似文献   

20.
海水养殖场沉积物中硝酸盐还原菌种群分析   总被引:2,自引:0,他引:2  
通过对福建省沿海海水养殖场沉积物中参与氮循环的各生理群细菌数量分析 ,发现氨化和硝酸盐还原细菌是优势生理菌群 ,同时 ,表层泥样中的硝酸盐还原菌数量明显高于深层泥样。从该环境中分离获得 106株细菌 ,其中 58株具有硝酸盐还原能力 ,初步鉴定表明它们主要为芽孢杆菌属 (Bacillus)、盐芽孢杆菌属 (Halobacillus)、短芽孢杆菌属 (Brevibacil lus)、动性球菌属 (Planococcus)和动性杆菌属 (Plano  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号