首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Cancer is a widespread disease, with half of all men and one-third of all women in the United States developing cancer during their lifetime. The efficacy of many cancer treatments including radiotherapy, chemotherapy and immunotherapy is due to their ability to induce tumor cell apoptosis. Recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being developed as a cancer therapeutic since it selectively induces apoptosis in a variety of transformed cells, but not in most normal cells. Agonistic monoclonal antibodies (mAbs) specific for human death-inducing TRAIL receptors (DR4 or DR5) are also being actively pursued. Importantly, in experimental mice, synergistic anti-tumor effects have been observed with a combination treatment of agonistic mAb against DR5 together with either IL-21 or agonistic mAbs against CD40 and CD137. Together, these findings suggest that antibody-based therapies that cause tumor cell apoptosis and promote T cell memory or function may be effective in fighting cancer.  相似文献   

2.
4-1BB, a member of the TNFR superfamily, is a costimulatory receptor primarily expressed on activated T cells. It has been shown that the administration of agonistic anti-4-1BB Abs enhances tumor immunity and allogenic immune responses. Paradoxically, we found that the administration of an agonistic anti-4-1BB mAb (2A) dramatically reduced the incidence and severity of experimental autoimmune encephalomyelitis (EAE). Adoptive transfer of T cells from such treated mice failed to induce EAE, whereas anti-4-1BB treatment following adoptive transfer of encephalitogenic T cells did not prevent EAE pathogenesis. These results suggest that anti-4-1BB treatment during the induction phase inhibits autoreactive T cell immune responses rather than preventing T cell trafficking into the CNS. This was substantiated by the observations that draining lymph node cells from anti-4-1BB-treated mice failed to respond to Ag stimulation in vitro. In addition, we found that such treatment initially promotes the activation and proliferation of Ag-specific CD4+ T cells but subsequently increases their probability of undergoing activation-induced cell death, thereby inhibiting effector T cell responses. More importantly, 2A treatment also inhibits the relapse of EAE in a clinically relevant murine model of multiple sclerosis. This study indicates that the agonistic Ab against 4-1BB can potentially be used as a novel immunotherapeutic agent for treating autoimmune diseases.  相似文献   

3.
Tumor-cell apoptosis is the basis of many cancer therapies, and tumor-specific T cells are the principal effectors of successful antitumor immunotherapies. Here we show that induction of tumor-cell apoptosis by an agonistic monoclonal antibody to DR5, the apoptosis-inducing receptor for TNF-related apoptosis-inducing ligand (TRAIL), combined with T-cell activation by agonistic monoclonal antibodies to the costimulatory molecules CD40 and CD137, potently and rapidly stimulated tumor-specific effector CD8+ T cells capable of eradicating preestablished tumors. Primary fibrosarcomas initiated with the carcinogen 3-methylcholanthrene (MCA), multiorgan metastases and a primary tumor containing as many as 90% tumor cells resistant to DR5-specific monoclonal antibody were rejected without apparent toxicity or induction of autoimmunity. This combination therapy of three monoclonal antibodies (trimAb) rapidly induced tumor-specific CD8+ T cells producing interferon (IFN)-gamma in the tumor-draining lymph node, consistent with a crucial requirement for CD8+ T cells and IFN-gamma in the tumor rejection process. These results in mice indicate that a rational monoclonal antibody-based therapy that both causes tumor-cell apoptosis through DR5 and activates T cells may be an effective strategy for cancer immunotherapy in humans.  相似文献   

4.
Lymphocytes are important in the pathogenesis of many autoimmune diseases. Blocking co-stimulatory signals for T-cell activation has been widely used as an approach to treating autoimmunity, but it has encountered limited clinical success. Some agonistic monoclonal antibodies to co-stimulatory molecules greatly enhance immune responses mediated by T cells, such as antiviral, anti-tumor and alloresponses. Surprisingly, recent studies have demonstrated that these agonists have profound therapeutic effects on autoimmune diseases by potentially depleting autoreactive lymphocytes or by inhibiting their function. These findings imply that signaling through co-stimulatory molecules can have diametric outcomes in modulating immune responses, thereby providing a novel approach to the treatment of autoimmune diseases.  相似文献   

5.
The engagement of CD137 (4-1BB), an inducible T cell costimulatory receptor and member of the TNF receptor superfamily, by agonistic Abs can promote strong tumor and viral immunity mediated by CD8(+) T cells and stimulate IFN-gamma production. However, its role in Th2-mediated immune responses has not been well defined. To address this issue, we studied the function of CD137 engagement using an allergic airway disease model in which the mice were sensitized with inactivated Schistosoma mansoni eggs followed by S. mansoni egg Ag challenge directly in the airways and Th1/2 cytokine production was monitored. Interestingly, treatment of C57BL/6 mice with agonistic anti-CD137 (2A) during sensitization completely prevents allergic airway inflammation, as shown by a clear inhibition of T cell and eosinophil infiltration into the lung tissue and airways, accompanied by diminished Th2 cytokine production and reduced serum IgE levels, as well as a reduction of airway hyperresponsiveness. At various time points after immunization, restimulated splenocytes from 2A-treated mice displayed reduced proliferation and Th2 cytokine production. In accordance with this, agonistic Ab to CD137 can directly coinhibit Th2 responses in vitro although it costimulates Th1 responses. CD137-mediated suppression of Th2 response is independent of IFN-gamma and T regulatory cells. Our study has identified a novel pathway to inhibit Th2 responses in a CD137-dependent fashion.  相似文献   

6.
CD137 (also called 4-1BB and TNFRSF9) has recently received attention as a therapeutic target for cancer and a variety of autoimmune and inflammatory diseases. Stimulating CD137 in vivo enhances CD8(+) T cell-activity and results in strong immunosuppression in some contexts. This paradoxical phenomenon may be partially explained by the ability of CD137-stimulating reagents (usually agonistic monoclonal antibodies against CD137) to overactivate T cells and other CD137-expressing cells. This over-activity is associated with deleting pathogenic T cells and B cells or generating a tolerogenic microenvironment. Recent studies, however, suggest that the biology of CD137 and its ligand (CD137L) are more complex, mainly due to bidirectional signaling between CD137 and CD137L. For example, signaling through CD137L in non-hematopoietic cells such as epithelial cells and endothelial cells has been shown to play an essential role in sterile inflammation by regulating immune cell recruitment. One outstanding, and clinically important, issue is understanding how bidirectional signaling through CD137 and CD137L controls the vicious cycle of sterile inflammation (e.g., ischemia-reperfusion tissue injury and meta-inflammatory diseases).  相似文献   

7.
Autoreactive CD8(+) T lymphocytes play a key role in the pathogenesis of several autoimmune diseases. It is not yet well understood how autoreactive CD8(+) T cells, which express TCRs with low reactivity toward self-Ags, gain the ability to respond to autoantigens to cause disease. Previously, we have shown that prior stimulation of CD8(+) T cells with synergistic combinations of cytokines produced by the innate immune response, such as IL-21 and IL-15, induces Ag-independent proliferation. Such "cytokine-primed" CD8 T cells displayed increased responsiveness to limiting quantities of the cognate Ag. In this paper, we report that prior stimulation with IL-15 and IL-21 also enables CD8(+) T cells to respond to weakly agonistic TCR ligands, resulting in proliferation, cytokine secretion, and cytolytic activity. Using a transgenic mouse model of autoimmune diabetes, we show that cytokine-primed autoreactive CD8(+) T cells induce disease following stimulation by weak TCR ligands, but their diabetogenic potential is dependent on continuous availability of IL-15 in vivo. These findings suggest that inflammatory cytokines could facilitate the triggering of autoreactive CD8(+) T cells by weak autoantigens, and this mechanism may have important implications for autoimmune diseases associated with microbial infections and chronic inflammation.  相似文献   

8.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD8(+) T cells in the pancreas-draining lymph nodes. In this study, we show that development of autoregulatory CD8(+) T cell memory is CD4(+) T cell dependent. Transgenic (TG) NOD mice expressing a low-affinity autoreactive TCR were completely resistant to autoimmune diabetes, even after systemic treatment of the mice with agonistic anti-CD40 or anti-4-1BB mAbs or autoantigen-pulsed dendritic cells, strategies that dramatically accelerate diabetes development in TG NOD mice expressing a higher affinity TCR for the same autoantigenic specificity. Furthermore, whereas abrogation of RAG-2 expression, hence endogenous CD4(+) T cell and B cell development, decelerated disease progression in high-affinity TCR-TG NOD mice, it converted the low-affinity TCR into a pathogenic one. In agreement with these data, polyclonal CD4(+) T cells from prediabetic NOD mice promoted disease in high-affinity TCR-TG NOD.Rag2(-/-) mice, but inhibited it in low-affinity TCR-TG NOD.Rag2(-/-) mice. Thus, in chronic autoimmune responses, CD4(+) Th cells contribute to both promoting and suppressing pathogenic autoimmunity.  相似文献   

9.
CD137-mediated signals costimulate T cells and protect them from activation-induced apoptosis; they induce curative antitumor immunity and enhance antiviral immune responses in mice. In contrast, anti-CD137 agonistic mAbs can suppress T-dependent humoral immunity and reverse the course of established autoimmune disease. These results have provided a rationale for assessing the therapeutic potential of CD137 ligands in human clinical trials. In this study, we report that a single 200-mug injection of anti-CD137 given to otherwise naive BALB/c or C57BL/6 mice led to the development of a series of immunological anomalies. These included splenomegaly, lymphadenopathy, hepatomegaly, multifocal hepatitis, anemia, altered trafficking of B cells and CD8 T cells, loss of NK cells, and a 10-fold increase in bone marrow (BM) cells bearing the phenotype of hemopoietic stem cells. These events were dependent on CD8 T cells, TNF-alpha, IFN-gamma, and type I IFNs. BM cells up-regulated Fas, and there was a significant increase in the number of CD8+ T cells that correlated with a loss of CD19+ and Ab-secreting cells in the BM. TCR Valphabeta usage was random and polyclonal among liver-infiltrating CD8 T cells, and multifocal CD8+ T cell infiltrates were resolved upon termination of anti-CD137 treatment. Anti-CD137-treated mice developed lymphopenia, thrombocytopenia, and anemia, and had lowered levels of hemoglobin and increased numbers of reticulocytes.  相似文献   

10.
Targeted immunotherapies hold great promise for the treatment and cure of autoimmune diseases. The efficacy of CD3-specific monoclonal antibody therapy in mice and humans stems from its ability to re-establish immune homeostasis in treated individuals. This occurs through modulation of the T-cell receptor (TCR)-CD3 complex (also termed antigenic modulation) and/or induction of apoptosis of activated autoreactive T cells, which leaves behind 'space' for homeostatic reconstitution that favours selective induction, survival and expansion of adaptive regulatory T cells, which establishes long-term tolerance. This Review summarizes the pre-clinical and clinical studies of CD3-specific monoclonal antibody therapy and highlights future opportunities to enhance the efficacy of this potent immunotherapeutic.  相似文献   

11.
B cells, but not T cells, are considered to be important for the formation of follicular dendritic cell (FDC) clusters. Stimulation with agonist mAbs against CD137 (4-1BB), a TNFR family member primarily expressed on activated T cells, was effective in promoting T cell responses, but paradoxically suppressed T-dependent humoral immunity and autoantibody production in autoimmune disease models. Our present study shows that agonistic anti-CD137 treatment activates T cells, resulting in diminished FDC networks in B cell follicles, which are important components in T-dependent humoral immune responses both before and after the initiation of an immune response. Pretreatment with anti-CD137 before the secondary immunization inhibited memory Ab responses. Interestingly, CD137 costimulation-induced diminishment of FDC is T cell dependent. In addition, both CD4(+) and CD8(+) T cells are recruited into FDC area and are able to regulate FDCs by CD137 costimulation through a direct or indirect mechanism. These studies have revealed a previously unappreciated role of T cells in the regulation of FDC networks.  相似文献   

12.
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.  相似文献   

13.
Although it is established that failure of regulatory mechanisms underlies many autoimmune diseases, the stimuli that activate autoreactive lymphocytes remain poorly understood. Defining these stimuli will lead to therapeutic strategies for autoimmune diseases. IL-2-deficient mice develop spontaneous autoimmunity, because of a deficiency of regulatory T cells, and on the BALB/c background, they rapidly die from autoimmune hemolytic anemia. To define the importance of costimulatory pathways in various components of this autoimmune disorder, we first intercrossed IL-2-deficient mice with mice lacking CD28 or CD40L. Elimination of CD28 reduced the activation of autoreactive T cells and lymphoproliferation as well as production of autoantibodies, whereas elimination of CD40L reduced autoantibody production without affecting T cell expansion and accumulation. To examine the role of IL-7, we blocked IL-7R signaling with neutralizing Abs. This treatment inhibited the production of autoantibodies and the development of autoimmune hemolytic anemia. Together, these data indicate that specific costimulatory and cytokine signals are critical for the spontaneous autoantibody-mediated disease that develops in IL-2-deficient mice.  相似文献   

14.
Fas antigen (Fas) is a cell surface receptor molecule introducing apoptosis-inducing signals into Fas-bearing cells by stimulation with Fas ligand or agonistic anti-Fas monoclonal antibodies. Fas system has been implicated in the regulation of homeostasis of peripheral T and B lymphocytes including elimination of autoreactive cells, and in the exclusion of tumor and virus-infected cells. Fas system, however, also plays a role in the mechanisms responsible for tissue disruption in tissue-specific autoimmune disease and fulminant hepatitis. In this review, I describe how we prepared the original anti-human Fas monoclonal antibody with associated cell-killing activity, and I propose here a strategy of therapeutic use of a novel anti-Fas monoclonal antibody for autoimmune and other diseases.  相似文献   

15.
Increased monocyte/macrophage (Mphi) apoptosis occurs in patients with systemic lupus erythematosus (SLE) and is mediated, at least in part, by an autoreactive CD4(+) T cell subset. Furthermore, autoreactive murine CD4(+) T cells that kill syngeneic Mphi in vitro induce a lupus-like disease in vivo. However, it is unclear whether increased Mphi apoptosis in SLE per se is sufficient to accelerate/promote autoimmunity. We have investigated whether increased Mphi apoptosis in vivo, induced by the administration of clodronate liposomes, can exacerbate the autoimmune phenotype in NZB x SWR (SNF(1)) lupus-prone mice, and induce autoantibody production in haplotype-matched BALB/c x DBA1 (DBF(1)) non-lupus-prone mice. Lupus-prone mice SNF(1) mice that were treated with clodronate liposomes, but not mice treated with vehicle, developed significant increases in autoantibodies to dsDNA, nucleosomes, and the idiotypically related family of nephritic Abs Id(LN)F(1), when compared with untreated SNF(1) mice. Furthermore, clodronate treatment hastened the onset of proteinuria and worsened SNF(1) lupus nephritis. When compared with vehicle-treated controls, clodronate-treated non-lupus-prone DBF(1) mice developed significantly higher levels of anti-nucleosome and Id(LN)F(1) Abs but did not develop lupus nephritis. We propose that Mphi apoptosis contributes to the pathogenesis of autoantibody formation and organ damage through both an increase in the apoptotic load and impairment in the clearance of apoptotic material. This study suggests that mechanisms that induce scavenger cell apoptosis, such as death induced by autoreactive cytotoxic T cells observed in SLE, could play a pathogenic role and contribute to the severity of the disease.  相似文献   

16.
4-1BB costimulates T cells to carry out effector functions such as eradication of established tumours. 4-1BB (CD137) is a member of the TNF receptor family, and its triggering by either 4-1BB ligand or antibody ligation induces T-cell activation and growth. We analysed tumour-infiltrating lymphocytes (TIL) in the experimental B16F10 melanoma model to determine the mechanisms involved in 4-1BB-mediated tumour suppression. 4-1BB(+/+) mice survived longer than 4-1BB(-/-) mice, and survival was further prolonged by triggering 4-1BB with an agonistic mAb. The number of metastatic B16F10 colonies in the lung was much greater in 4-1BB(-/-) mice than in their 4-1BB(+/+) littermates. Administration of agonistic anti-4-1BB mAb increased the number of TIL in the tumour masses in the lungs of 4-1BB(+/+) mice. The numbers of CD4(+) T, CD8(+) T and CD11b(+) TIL increased in these mice. Anti-4-1BB mAb induced not only CD8(+) 4-1BB(+) T cells but also a CD8(+) IFN-gamma(+) T-cell population. B16F10 cells from the lungs of anti-4-1BB-treated mice showed enhanced expression of MHC class Iota and IotaIota antigens compared with the same cells from control IgG-treated mice. Thus, the increase in number of CD8(+) T cells and enhanced MHC Iota and IotaIota expression in B16F10 cells that result from augmented IFN-gamma production in response to anti-4-1BB mAb may lead to suppression of tumour growth and metastasis.  相似文献   

17.
Studies of several gene knockout mice suggest an interesting association of a moderate T cell response with systemic autoimmune diseases. In addition, CD95 ligand (FasL) expression in some strains of these mice is impaired. Because FasL is critically involved in regulating peripheral tolerance, there may be a link between autoimmune diseases and a moderate T cell response that cannot activate the FasL gene. Here, we propose that there are two thresholds of T cell activation. When moderately stimulated, T cells can be activated to the low (1st) threshold, which permits the induction of CD40L, IL-2, IL-4, and other components that help the immune response. The high (2nd) activation threshold can only be achieved by a strong and concurrent stimulation through TCR and IL-2R. Once the high threshold is reached, FasL is produced to induce apoptosis of the activated T and B cells. In the absence of the FasL-mediated downregulation, the activated B cells become efficient antigen-presenting cells for self-antigens and excellent responders for T cell help. Such an exacerbating condition, induced by recurrent and moderate activation, favors the development of autoreactive T cells and autoantibody production. Evidence supporting this hypothesis and some predictions that can be tested are described.  相似文献   

18.
Insulin-dependent diabetes is an autoimmune disease targeting pancreatic beta-islet cells. Recent data suggest that autoreactive CD8+ T cells are involved in both the early events leading to insulitis and the late destructive phase resulting in diabetes. Although therapeutic injection of protein and synthetic peptides corresponding to CD4+ T cell epitopes has been shown to prevent or block autoimmune disease in several models, down-regulation of an ongoing CD8+ T cell-mediated autoimmune response using this approach has not yet been reported. Using CL4-TCR single transgenic mice, in which most CD8+ T cells express a TCR specific for the influenza virus hemagglutinin HA512-520 peptide:Kd complex, we first show that i.v. injection of soluble HA512-520 peptide induces transient activation followed by apoptosis of Tc1-like CD8+ T cells. We next tested a similar tolerance induction strategy in (CL4-TCR x Ins-HA)F1 double transgenic mice that also express HA in the beta-islet cells and, as a result, spontaneously develop a juvenile onset and lethal diabetes. Soluble HA512-520 peptide treatment, at a time when pathogenic CD8+ T cells have already infiltrated the pancreas, very significantly prolongs survival of the double transgenic pups. In addition, we found that Ag administration eliminates CD8+ T cell infiltrates from the pancreas without histological evidence of bystander damage. Our data indicate that agonist peptide can down-regulate an autoimmune reaction mediated by CD8+ T cells in vivo and block disease progression. Thus, in addition to autoreactive CD4+ T cells, CD8+ T cells may constitute targets for Ag-specific therapy in autoimmune diseases.  相似文献   

19.
Experimental autoimmune thyroiditis (EAT), a model for Hashimoto's thyroiditis, is a T cell-mediated disease inducible with mouse thyroglobulin (mTg). Pretreatment with mTg, however, can induce CD4+ T cell-mediated tolerance to EAT. We demonstrate that CD4+CD25+ regulatory cells are critical for the tolerance induction, as in vivo depletion of CD25+ cells abrogated established tolerance, and CD4+CD25+ cells from tolerized mice suppressed mTg-responsive cells in vitro. Importantly, administration of an agonistic CD137 monoclonal antibody (mAb) inhibited tolerance development, and the mediation of established tolerance. CD137 mAb also inhibited the suppression of mTg-responsive cells by CD4+CD25+ cells in vitro. Signaling through CD137 likely resulted in enhancement of the responding inflammatory T cells, as anti-CD137 did not enable CD4+CD25+ T cells to proliferate in response to mTg in vitro.  相似文献   

20.
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号