首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.  相似文献   

2.
The COP9/signalosome complex is highly conserved in evolution and possesses significant structural similarity to the 19S regulatory lid complex of the proteasome. It also shares limited similarity to the translation initiation factor eIF3. The signalosome interacts with multiple cullins in mammalian cells. In the fission yeast Schizosaccharomyces pombe, the Csn1 subunit is required for the removal of covalently attached Nedd8 from Pcu1, one of three S. pombe cullins. It remains unclear whether this activity is required for all the functions ascribed to the signalosome. We previously identified Csn1 and Csn2 as signalosome subunits in S. pombe. csn1 and csn2 null mutants are DNA damage sensitive and exhibit slow DNA replication. Two further putative subunits, Csn4 and Csn5, were identified from the S. pombe genome database. Herein, we characterize null mutations of csn4 and csn5 and demonstrate that both genes are required for removal of Nedd8 from the S. pombe cullin Pcu1 and that their protein products associate with Csn1 and Csn2. However, neither csn4 nor csn5 null mutants share the csn1 and csn2 mutant phenotypes. Our data suggest that the subunits of the signalosome cannot be considered as a distinct functional unit and imply that different subunits of the signalosome mediate distinct functions.  相似文献   

3.
The COP9 signalosome (CSN) is known to bind cullin-RING ubiquitin ligases (CRLs) and to promote their activity in vivo. The mechanism of this stimulation has remained enigmatic because CSN's intrinsic and associated enzymatic activities paradoxically inhibit CRL activity in vitro. Reconciling this paradox, we show here that Csn5-catalysed cullin (Cul) deneddylation and Ubp12-mediated deubiquitination cooperate in maintaining the stability of labile substrate adapters, thus facilitating CRL function. Various fission-yeast csn and ubp12 deletion mutants have lower levels of the Cul3p adapter Btb3p. This decrease is due to increased autocatalytic, Cul3p-dependent, ubiquitination and the subsequent degradation of Btb3p. The CSN-Ubp12p pathway also maintains the stability of the Cul1p adapter Pop1p, a mechanism required for the efficient destruction of its cognate substrate Rum1p. Emphasizing the physiological importance of this mechanism, we found that the dispensable csn5 and ubp12 genes become essential for viability when adapter recruitment to Cul1p is compromised. Our data suggest that maintenance of adapter stability is a general mechanism of CRL control by the CSN.  相似文献   

4.
5.
Wang X  Feng S  Nakayama N  Crosby WL  Irish V  Deng XW  Wei N 《The Plant cell》2003,15(5):1071-1082
The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.  相似文献   

6.
Wu JT  Lin HC  Hu YC  Chien CT 《Nature cell biology》2005,7(10):1014-1020
Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN). Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable - as suggested by the evidence that Nedd8 promotes the instability of both cullins - and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.  相似文献   

7.
The COP9 signalosome (CSN) is required for the full activity of cullin-RING E3 ubiquitin ligases (CRLs) in eukaryotes. CSN exerts its function on CRLs by removing the ubiquitin-related NEDD8 conjugate from the cullin subunit of CRLs. CSN seems, thereby, to control CRL disassembly or CRL subunit stability. In Arabidopsis thaliana, loss of CSN function leads to constitutive photomorphogenic (cop) seedling development and a post-germination growth arrest. The underlying molecular cause of this growth arrest is currently unknown. Here, we show that Arabidopsis csn mutants are delayed in G2 phase progression. This cell cycle arrest correlates with the induction of the DNA damage response pathway and is suggestive of the activation of a DNA damage checkpoint. In support of this hypothesis, we detected gene conversion events in csn mutants that are indicative of DNA double-strand breaks. DNA damage is also apparent in mutants of the NEDD8 conjugation pathway and in mutants of the E3 ligase subunits CULLIN4, COP1 and DET1, which share phenotypes with csn mutants. In summary, our data suggest that Arabidopsis csn mutants undergo DNA damage, which might be the cause of the delay in G2 cell cycle progression.  相似文献   

8.
The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show that these mutants are phenotypically indistinguishable from the previously described cop/det/fus mutants of other CSN subunits. However, we also show that these mutants retain the CSN complex (lacking CSN5), and this finding is in contrast with the previously described CSN subunit mutants, which lack the CSN complex. We therefore conclude that loss of CSN5 as part of CSN is sufficient to cause the cop/det/fus mutant phenotype. Furthermore, we show that mutants defective in CSN5 as well as mutants defective in CSN are unable to deneddylate the Arabidopsis cullins AtCUL1, AtCUL3A, and AtCUL4. Because these are representative cullin subunits of the three cullin-containing E3 families present in Arabidopsis, we postulate that the cop/det/fus mutant phenotype may be the result of the defects caused by impaired CSN5-dependent deneddylation of cullin-containing E3s.  相似文献   

9.
The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.  相似文献   

10.
The COP9 signalosome (CSN) is a conserved eukaryotic protein complex implicated in the regulation of cullin-RING type E3 ubiquitin ligases by cleaving the small peptide RUB/Nedd8 from cullins. However, detailed analysis of CSN physiological functions in Arabidopsis has been hampered by the early seedling-lethality of csn null mutants. We and others have now identified a number of viable hypomorphic csn mutants which start to reveal novel CSN-dependent activities in adult Arabidopsis plants.1 Here, we present a detailed comparative analysis of the csn5a-1 and csn2-5 mutants as a mean to improve understanding of CSN functions in plant cells. Our observations point to CSN-independent activities of CSN5 and suggest a role of the CSN in cytoskeleton assembly/organization.Key words: Arabidopsis, root skewing, CSN, COP9 signalosome, SCF, ubiquitin, TIR1, auxin  相似文献   

11.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

12.
In concert with the ubiquitin (Ub) proteasome system (UPS) the COP9 signalosome (CSN) controls the stability of cellular regulators. The CSN interacts with cullin-RING Ub ligases (CRLs) consisting of a specific cullin, a RING protein as Rbx1 and substrate recognition proteins. The Ub-like protein Nedd8 is covalently linked to cullins and removed by the CSN-mediated deneddylation. Cycles of neddylation and deneddylation regulate CRLs. Apoptotic stimuli cause caspase-dependent modifications of the UPS. However, little is known about the CSN during apoptosis. We demonstrate in vitro and in vivo that CSN6 is cleaved most effectively by caspase 3 at D23 after 2–3 h of apoptosis induced by anti-Fas-Ab or etoposide. CSN6 processing occurs in CSN–CRL complexes and is followed by the cleavage of Rbx1, the direct interaction partner of CSN6. Caspase-dependent cutting of Rbx1 is accompanied by decrease of neddylated proteins in Jurkat T cells. Another functional consequence of CSN6 cleavage is the enhancement of CSN-mediated deneddylating activity causing deneddylation of cullin 1 in cells. The CSN-associated deubiquitinating as well as kinase activity remained unchanged in presence of active caspase 3. The cleavage of Rbx1 and increased deneddylation of cullins inactivate CRLs and presumably stabilize pro-apoptotic factors for final apoptotic steps. Bettina K. J. Hetfeld and Andreas Peth contributed equally.  相似文献   

13.
The bacterial effector protein cycle inhibiting factor (CIF) converts glutamine 40 of NEDD8 to glutamate (Q40E), causing cytopathic effects and inhibiting cell proliferation. Although these have been attributed to blocking the functions of cullin-RING ubiquitin ligases, how CIF modulates NEDD8-dependent signaling is unclear. Here we use conditional NEDD8-dependent yeast to explore the effects of CIF on cullin neddylation. Although CIF causes cullin deneddylation and the generation of free NEDD8 Q40E, inhibiting the COP9 signalosome (CSN) allows Q40E to form only on NEDD8 attached to cullins. In the presence of the CSN, NEDD8 Q40E is removed from cullins more rapidly than NEDD8, leading to a decrease in steady-state cullin neddylation. As NEDD8 Q40E is competent for cullin conjugation in the absence of functional CSN and with overexpression of the NEDD8 ligase Dcn1, our data are consistent with NEDD8 deamidation causing enhanced deneddylation of cullins by the CSN. This leads to a dramatic change in the extent of activated cullin-RING ubiquitin ligases.  相似文献   

14.
The COP9 signalosome (CSN) is a multifunctional protein complex essential for arabidopsis development. One of its functions is to promote Rub1/Nedd8 deconjugation from the cullin subunit of the Skp1-cullin-F-box ubiquitin ligase. Little is known about the specific role of its eight subunits in deneddylation or any of the physiological functions of CSN. In the absence of CSN1 (the fus6 mutant), arabidopsis CSN complex cannot assemble, which destabilizes multiple CSN subunits and contributes, together with the loss of CSN1, to the phenotype of fus6. To distinguish CSN1-specific functions, we attempted to rescue the complex formation with deletion or point-mutation forms of CSN1 expressed as transgenes in fus6. We show that the central domain of CSN1 is critical for complex assembly, whereas the C-terminal domain has a supporting role. By expressing the C231 fragment, which contains the structural information but lacks the presumed functional domain located at the N terminus, we have rescued the complex formation and restored the Rub1/Nedd8 deconjugation activity on cullins (fus6/C231). Nonetheless, fus6/C231 exhibits pleiotropic phenotype, including photomorphogenic defects and growth arrest at seedling stage. We conclude that CSN1 N-terminal domain is not required for the Rub1/Nedd8 deconjugation activity of cullins, but contributes to a significant aspect of CSN functions that are essential for plant development.  相似文献   

15.
Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities.  相似文献   

16.
The COP9 signalosome (CSN) is a conserved protein complex with homologies to the lid subcomplex of the 26S proteasome. It promotes cleavage of the Nedd8 conjugate (deneddylation) from the cullin component of SCF ubiquitin ligases. We provide evidence that cullin neddylation and deneddylation is highly dynamic, that its equilibrium can be effectively modulated by CSN, and that neddylation allows Cul1 to form larger protein complexes. CSN2 integrates into the CSN complex via its C-terminal region and its N-terminal half region is necessary for direct interaction with Cul1. The polyclonal antibodies against CSN2 but not other CSN subunits cause accumulation of neddylated Cul1/Cul2 in HeLa cell extract, indicating that CSN2 is essential in cullin deneddylation. Further, CSN inhibits ubiquitination and degradation of the cyclin-dependent kinase inhibitor p27(kip1) in vitro. Microinjection of the CSN complex impeded the G1 cells from entering the S phase. Moreover, anti-CSN2 antibodies negate the CSN-dependent p27 stabilization and the G1/S blockage, suggesting that these functions require the deneddylation activity. We conclude that CSN inhibits SCF ubiquitin ligase activity in targeting p27 proteolysis and negatively regulates cell cycle at the G1 phase by promoting deneddylation of Cul1.  相似文献   

17.
DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.  相似文献   

18.
Wang J  Hu Q  Chen H  Zhou Z  Li W  Wang Y  Li S  He Q 《PLoS genetics》2010,6(12):e1001232
The Cop9 signalosome (CSN) is an evolutionarily conserved multifunctional complex that controls ubiquitin-dependent protein degradation in eukaryotes. We found seven CSN subunits in Neurospora crassa in a previous study, but only one subunit, CSN-2, was functionally characterized. In this study, we created knockout mutants for the remaining individual CSN subunits in N. crassa. By phenotypic observation, we found that loss of CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, or CSN-7 resulted in severe defects in growth, conidiation, and circadian rhythm; the defect severity was gene-dependent. Unexpectedly, CSN-3 knockout mutants displayed the same phenotype as wild-type N. crassa. Consistent with these phenotypic observations, deneddylation of cullin proteins in csn-1, csn-2, csn-4, csn-5, csn-6, or csn-7 mutants was dramatically impaired, while deletion of csn-3 did not cause any alteration in the neddylation/deneddylation state of cullins. We further demonstrated that CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, and CSN-7, but not CSN-3, were essential for maintaining the stability of Cul1 in SCF complexes and Cul3 and BTB proteins in Cul3-BTB E3s, while five of the CSN subunits, but not CSN-3 and CSN-5, were also required for maintaining the stability of SKP-1 in SCF complexes. All seven CSN subunits were necessary for maintaining the stability of Cul4-DDB1 complexes. In addition, CSN-3 was also required for maintaining the stability of the CSN-2 subunit and FWD-1 in the SCF(FWD-1) complex. Together, these results not only provide functional insights into the different roles of individual subunits in the CSN complex, but also establish a functional framework for understanding the multiple functions of the CSN complex in biological processes.  相似文献   

19.
20.
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with an essential role in the development of higher eukaryotes. CSN deconjugates the ubiquitin-related modifier NEDD8 from the cullin subunit of cullin-RING type E3 ubiquitin ligases (CRLs), and CSN-mediated cullin deneddylation is required for full CRL activity. Although several plant E3 CRL functions have been shown to be compromised in Arabidopsis csn mutants, none of these functions have so far been shown to limit growth in these mutants. Here, we examine the role of CSN in the context of the E3 ubiquitin ligase SCFSLEEPY1 (SLY1), which promotes gibberellic acid (GA)-dependent responses in Arabidopsis thaliana. We show that csn mutants are impaired in GA- and SCFSLY1-dependent germination and elongation growth, and we show that these defects correlate with an accumulation and reduced turnover of an SCFSLY1-degradation target, the DELLA protein REPRESSOR-OF-ga1-3 (RGA). Genetic interaction studies between csn mutants and loss-of-function alleles of RGA and its functional homologue GIBBERELLIC ACID INSENSITIVE (GAI) further reveal that RGA and GAI repress defects of germination in strong csn mutants. In addition, we find that these two DELLA proteins are largely responsible for the elongation defects of a weak csn5 mutant allele. We thus conclude that an impairment of SCFSLY1 is at least in part causative for the germination and elongation defects of csn mutants, and suggest that DELLA proteins are major growth repressors in these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号