首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.  相似文献   

2.
H Li  A W Nicholson 《The EMBO journal》1996,15(6):1421-1433
Ethylation interference and hydroxyl radical footprinting were used to identify substrate ribose-phosphate backbone sites that interact with the Escherichia coli RNA processing enzyme, ribonuclease III. Two RNase III mutants were employed, which bind substrate in vitro similarly as wild-type enzyme, but lack detectable phosphodiesterase activity. Specifically, altering glutamic acid at position 117 to lysine or alanine uncouples substrate binding from cleavage. The two substrates examined are based on the bacteriophage T7 R1.1 RNase III processing signal. One substrate, R1.1 RNA, undergoes accurate single cleavage at the canonical site, while a close variant, R1.1[WC-L] RNA, undergoes coordinate double cleavage. The interference and footprinting patterns for each substrate (i) overlap, (ii) exhibit symmetry and (iii) extend approximately one helical turn in each direction from the RNase III cleavage sites. Divalent metal ions (Mg2+, Ca2+) significantly enhance substrate binding, and confer stronger protection from hydroxyl radicals, but do not significantly affect the interference pattern. The footprinting and interference patterns indicate that (i) RNase III contacts the sugar-phosphate backbone; (ii) the RNase III-substrate interaction spans two turns of the A-form helix; and (iii) divalent metal ion does not play an essential role in binding specificity. These results rationalize the conserved two-turn helix motif seen in most RNase III processing signals, and which is necessary for optimal processing reactivity. In addition, the specific differences in the footprint and interference patterns of the two substrates suggest why RNase III catalyzes the coordinate double cleavage of R1.1[WC-L] RNA, and dsRNA in general, while catalyzing only single cleavage of R1.1 RNA and related substrates in which the scissle bond is within an asymmetric internal loop.  相似文献   

3.
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.  相似文献   

4.
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into a cell causes the specific degradation of a mRNA containing the same sequence. The 21–23 nt guide RNAs, generated by RNase III cleavage from longer dsRNAs, are associated with sequence-specific mRNA degradation. Here, we show that dsRNA specifically suppresses the expression of HIV-1 genes. To study dsRNA-mediated gene interference in HIV-1-infected cells, we have designed six long dsRNAs containing the HIV-1 gag and env genes. HIV-1 replication was totally suppressed in a sequence-specific manner by the dsRNAs in HIV-1-infected cells. Especially, E2 dsRNA containing the major CD4-binding domain sequence of gp120, as the target of the HIV-1 env gene, dramatically inhibited the expression of the HIV-1 p24 antigen in PBMCs for a relatively long time. The dsRNA interference method seems to be a promising new strategy for anti-HIV-1 gene therapeutics.  相似文献   

5.
The inside-out mechanism of Dicers from budding yeasts   总被引:1,自引:0,他引:1  
Weinberg DE  Nakanishi K  Patel DJ  Bartel DP 《Cell》2011,146(2):262-276
The Dicer ribonuclease III (RNase III) enzymes process long double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that direct RNA interference. Here, we describe the structure and activity of a catalytically active fragment of Kluyveromyces polysporus Dcr1, which represents the noncanonical Dicers found in budding yeasts. The crystal structure revealed a homodimer resembling that of bacterial RNase III but extended by a unique N-terminal domain, and it identified additional catalytic residues conserved throughout eukaryotic RNase III enzymes. Biochemical analyses showed that Dcr1 dimers bind cooperatively along the dsRNA substrate such that the distance between consecutive active sites determines the length of the siRNA products. Thus, unlike canonical Dicers, which successively remove siRNA duplexes from the dsRNA termini, budding-yeast Dicers initiate processing in the interior and work outward. The distinct mechanism of budding-yeast Dicers establishes a paradigm for natural molecular rulers and imparts substrate preferences with ramifications for biological function.  相似文献   

6.
Gan J  Tropea JE  Austin BP  Court DL  Waugh DS  Ji X 《Cell》2006,124(2):355-366
Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire family. Here, we present the crystal structure of an RNase III-product complex, the first catalytic complex observed for the family. A 7 residue linker within the protein facilitates induced fit in protein-RNA recognition. A pattern of protein-RNA interactions, defined by four RNA binding motifs in RNase III and three protein-interacting boxes in dsRNA, is responsible for substrate specificity, while conserved amino acid residues and divalent cations are responsible for scissile-bond cleavage. The structure reveals a wealth of information about the mechanism of RNA hydrolysis that can be extrapolated to other RNase III family members.  相似文献   

7.
The enzymatic cleavage of double-stranded (ds) RNA is an obligatory step in the maturation and decay of many cellular and viral RNAs. The primary agents of dsRNA processing are members of the ribonuclease III (RNase III) superfamily, which are highly conserved in eukaryotic and bacterial cells. Escherichia coli RNase III participates in the maturation of the ribosomal RNAs and in the maturation and decay of cellular and phage mRNAs. E. coli RNase III-dependent cleavage events can regulate gene expression by controlling mRNA stability and translational activity. RNase III recognizes its substrates and selects the scissile phosphodiester(s) by recognizing specific RNA sequence and structural elements, termed reactivity epitopes. Some E. coli RNase III substrates contain an internal loop, in which is located the single scissile phosphodiester. The specific features of the internal loop that establish the pattern of single-strand cleavage are not known. A mutational analysis of the asymmetric [4 nt/5 nt] internal loop of the phage T7 R1.1 substrate reveals that cleavage reactivity is largely independent of internal loop sequence. Instead, the [4/5] asymmetry per se is the primary determinant of cleavage of a single bond within the 5 nt strand of the internal loop. The T7 R1.1 internal loop lacks elements of local tertiary structure, as revealed by sensitivity to cleavage by terbium ion and by the ability of the internal loop to destabilize a small model duplex. The internal loop functions as a discrete structural element in that the pattern of cleavage can be controlled by the specific type of asymmetry. The implications of these findings are discussed in light of RNase III substrate function as a gene regulatory element.  相似文献   

8.
Members of the RNase III family are the primary cellular agents of dsRNA (double-stranded RNA) processing. Bacterial RNases III function as homodimers and contain two dsRBDs (dsRNA-binding domains) and two catalytic sites. The potential for functional cross-talk between the catalytic sites and the requirement for both dsRBDs for processing activity are not known. It is shown that an Escherichia coli RNase III heterodimer that contains a single functional wt (wild-type) catalytic site and an inactive catalytic site (RNase III[E117A/wt]) cleaves a substrate with a single scissile bond with a k(cat) value that is one-half that of wt RNase III, but exhibits an unaltered K(m). Moreover, RNase III[E117A/wt] cleavage of a substrate containing two scissile bonds generates singly cleaved intermediates that are only slowly cleaved at the remaining phosphodiester linkage, and in a manner that is sensitive to excess unlabelled substrate. These results demonstrate the equal probability, during a single binding event, of placement of a scissile bond in a functional or nonfunctional catalytic site of the heterodimer and reveal a requirement for substrate dissociation and rebinding for cleavage of both phosphodiester linkages by the mutant heterodimer. The rate of phosphodiester hydrolysis by RNase III[E117A/wt] has the same dependence on Mg(2+) ion concentration as that of the wt enzyme, and exhibits a Hill coefficient (h) of 2.0+/-0.1, indicating that the metal ion dependence essentially reflects a single catalytic site that employs a two-Mg(2+)-ion mechanism. Whereas an E. coli RNase III mutant that lacks both dsRBDs is inactive, a heterodimer that contains a single dsRBD exhibits significant catalytic activity. These findings support a reaction pathway involving the largely independent action of the dsRBDs and the catalytic sites in substrate recognition and cleavage respectively.  相似文献   

9.
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.  相似文献   

10.
Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.  相似文献   

11.
Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic.  相似文献   

12.
Sorrentino S  Naddeo M  Russo A  D'Alessio G 《Biochemistry》2003,42(34):10182-10190
Under physiological salt conditions double-stranded (ds) RNA is resistant to the action of most mammalian extracellular ribonucleases (RNases). However, some pancreatic-type RNases are able to degrade dsRNA under conditions in which the activity of bovine RNase A, the prototype of the RNase superfamily, is essentially undetectable. Human pancreatic ribonuclease (HP-RNase) is the most powerful enzyme to degrade dsRNA within the tetrapod RNase superfamily, being 500-fold more active than the orthologous bovine enzyme on this substrate. HP-RNase has basic amino acids at positions where RNase A shows instead neutral residues. We found by modeling that some of these basic charges are located on the periphery of the substrate binding site. To verify the role of these residues in the cleavage of dsRNA, we prepared four variants of HP-RNase: R4A, G38D, K102A, and the triple mutant R4A/G38D/K102A. The overall structure and active site conformation of the variants were not significantly affected by the amino acid substitutions, as deduced from CD spectra and activity on single-stranded RNA substrates. The kinetic parameters of the mutants with double-helical poly(A).poly(U) as a substrate were determined, as well as their helix-destabilizing action on a synthetic DNA substrate. The results obtained indicate that the potent activity of HP-RNase on dsRNA is related to the presence of noncatalytic basic residues which cooperatively contribute to the binding and destabilization of the double-helical RNA molecule. These data and the wide distribution of the enzyme in different organs and body fluids suggest that HP-RNase has evolved to perform both digestive and nondigestive physiological functions.  相似文献   

13.
Viral class 1 RNase III involved in suppression of RNA silencing   总被引:2,自引:0,他引:2  
Double-stranded RNA (dsRNA)-specific endonucleases belonging to RNase III classes 3 and 2 process dsRNA precursors to small interfering RNA (siRNA) or microRNA, respectively, thereby initiating and amplifying RNA silencing-based antiviral defense and gene regulation in eukaryotic cells. However, we now provide evidence that a class 1 RNase III is involved in suppression of RNA silencing. The single-stranded RNA genome of sweet potato chlorotic stunt virus (SPCSV) encodes an RNase III (RNase3) homologous to putative class 1 RNase IIIs of unknown function in rice and Arabidopsis. We show that RNase3 has dsRNA-specific endonuclease activity that enhances the RNA-silencing suppression activity of another protein (p22) encoded by SPCSV. RNase3 and p22 coexpression reduced siRNA accumulation more efficiently than p22 alone in Nicotiana benthamiana leaves expressing a strong silencing inducer (i.e., dsRNA). RNase3 did not cause intracellular silencing suppression or reduce accumulation of siRNA in the absence of p22 or enhance silencing suppression activity of a protein encoded by a heterologous virus. No other known RNA virus encodes an RNase III or uses two independent proteins cooperatively for RNA silencing suppression.  相似文献   

14.
15.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

16.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

17.
Structural determinants of RNA recognition and cleavage by Dicer   总被引:5,自引:0,他引:5  
A hallmark of RNA interference is the production of short double-stranded RNA (dsRNA) molecules 21-28 nucleotides in length by the specialized RNase III protein Dicer. Dicer enzymes uniquely generate RNA products of specific lengths by mechanisms that have not been fully elucidated. Here we show that the PAZ domain responsible for dsRNA end recognition confers this measuring ability through both its structural position and RNA-binding specificity. Point mutations define the dsRNA-binding surface and reveal a protein loop important for cleavage of substrates containing perfect or imperfect base pairing. On the basis of these results, we reengineered Dicer with a U1A RNA-binding domain in place of the PAZ domain to create an enzyme with altered end-recognition specificity and RNA product length. These results explain how Dicer functions as a molecular ruler and provide a structural basis for modifying its activity in cells.  相似文献   

18.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

19.
Ethidium bromide (EB) is known to inhibit cleavage of bacterial rRNA precursors by Escherichia coli ribonuclease III, a dsRNA-specific nuclease. The mechanism of EB inhibition of RNase III is not known nor is there information on EB-binding sites in RNase III substrates. We show here that EB is a reversible, apparently competitive inhibitor of RNase III cleavage of small model substrates in vitro. Inhibition is due to intercalation, since (i) the inhibitory concentrations of EB are similar to measured EB intercalation affinities; (ii) substrate cleavage is not affected by actinomycin D, an intercalating agent that does not bind dsRNA; (iii) the EB concentration dependence of inhibition is a function of substrate structure. In contrast, EB does not strongly inhibit the ability of RNase III to bind substrate. EB also does not block substrate binding by the C-terminal dsRNA-binding domain (dsRBD) of RNase III, indicating that EB perturbs substrate recognition by the N-terminal catalytic domain. Laser photocleavage experiments revealed two ethidium-binding sites in the substrate R1.1 RNA. One site is in the internal loop, adjacent to the scissile bond, while the second site is in the lower stem. Both sites consist of an A-A pair stacked on a CG pair, a motif which apparently provides a particularly favorable environment for intercalation. These results indicate an inhibitory mechanism in which EB site-specifically binds substrate, creating a cleavage-resistant complex that can compete with free substrate for RNase III. This study also shows that RNase III recognition and cleavage of substrate can be uncoupled and supports an enzymatic mechanism of dsRNA cleavage involving cooperative but not obligatorily linked actions of the dsRBD and the catalytic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号