首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the involvement of the RNA cleavage site-proximal 2' hydroxyl group in the RNase III catalytic mechanism, a specific processing substrate was chemically synthesized to contain a 2'-deoxyribose residue at the scissile phosphodiester bond. The RNA substrate, corresponding to the phage T7 R1.1 primary processing signal, can be accurately cleaved in vitro by RNase III. A fully deoxyribose-substituted R1.1 processing signal is not cleaved by RNase III, nor does it in excess inhibit cleavage of unmodified substrate. These results show that the 2' hydroxyl group proximal to the scissile bond is not an essential participant in the RNase III processing reaction; however, other 2' hydroxyl groups are important for substrate reactivity, and may be involved in establishing proper double helical conformation, and/or specific substrate contacts with RNase III.  相似文献   

2.
Escherichia coli ribonuclease III, purified to homogeneity from an overexpressing bacterial strain, exhibits a high catalytic efficiency and thermostable processing activity in vitro. The RNase III-catalyzed cleavage of a 47 nucleotide substrate (R1.1 RNA), based on the bacteriophage T7 R1.1 processing signal, follows substrate saturation kinetics, with a Km of 0.26 microM, and kcat of 7.7 min.-1 (37 degrees C, in buffer containing 250 mM potassium glutamate and 10 mM MgCl2). Mn2+ and Co2+ can support the enzymatic cleavage of the R1.1 RNA canonical site, and both metal ions exhibit concentration dependences similar to that of Mg2+. Mn2+ and Co2+ in addition promote enzymatic cleavage of a secondary site in R1.1 RNA, which is proposed to result from the altered hydrolytic activity of the metalloenzyme (RNase III 'star' activity), exhibiting a broadened cleavage specificity. Neither Ca2+ nor Zn2+ support RNase III processing, and Zn2+ moreover inhibits the Mg(2+)-dependent enzymatic reaction without blocking substrate binding. RNase III does not require monovalent salt for processing activity; however, the in vitro reactivity pattern is influenced by the monovalent salt concentration, as well as type of anion. First, R1.1 RNA secondary site cleavage increases as the salt concentration is lowered, perhaps reflecting enhanced enzyme binding to substrate. Second, the substitution of glutamate anion for chloride anion extends the salt concentration range within which efficient processing occurs. Third, fluoride anion inhibits RNase III-catalyzed cleavage, by a mechanism which does not involve inhibition of substrate binding.  相似文献   

3.
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.  相似文献   

4.
5.
6.
Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the sequence content of two discrete double-helical elements, termed the distal box (db) and proximal box (pb). A minimal substrate of E.coli RNase III, μR1.1 RNA, was characterized and used to define the db and pb sequence requirements for reactivity and their involvement in cleavage site selection. The reactivities of μR1.1 RNA sequence variants were examined in assays of cleavage and binding in vitro. The ability of all examined substitutions in the db to inhibit cleavage by weakening RNase III binding indicates that the db is a positive determinant of RNase III recognition, with the canonical UA/UG sequence conferring optimal recognition. A similar analysis showed that the pb also functions as a positive recognition determinant. It also was shown that the ability of the GC or CG bp substitution at a specific position in the pb to inhibit RNase III binding is due to the purine 2-amino group, which acts as a minor groove recognition antideterminant. In contrast, a GC or CG bp at the pb position adjacent to the scissile bond can suppress cleavage without inhibiting binding, and thus act as a catalytic antideterminant. It is shown that a single pb+db ‘set’ is sufficient to specify a cleavage site, supporting the primary function of the two boxes as positive recognition determinants. The base pair sequence control of reactivity is discussed within the context of new structural information on a post-catalytic complex of a bacterial RNase III bound to the cleaved minimal substrate.  相似文献   

7.
8.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

9.
Ethidium bromide (EB) is known to inhibit cleavage of bacterial rRNA precursors by Escherichia coli ribonuclease III, a dsRNA-specific nuclease. The mechanism of EB inhibition of RNase III is not known nor is there information on EB-binding sites in RNase III substrates. We show here that EB is a reversible, apparently competitive inhibitor of RNase III cleavage of small model substrates in vitro. Inhibition is due to intercalation, since (i) the inhibitory concentrations of EB are similar to measured EB intercalation affinities; (ii) substrate cleavage is not affected by actinomycin D, an intercalating agent that does not bind dsRNA; (iii) the EB concentration dependence of inhibition is a function of substrate structure. In contrast, EB does not strongly inhibit the ability of RNase III to bind substrate. EB also does not block substrate binding by the C-terminal dsRNA-binding domain (dsRBD) of RNase III, indicating that EB perturbs substrate recognition by the N-terminal catalytic domain. Laser photocleavage experiments revealed two ethidium-binding sites in the substrate R1.1 RNA. One site is in the internal loop, adjacent to the scissile bond, while the second site is in the lower stem. Both sites consist of an A-A pair stacked on a CG pair, a motif which apparently provides a particularly favorable environment for intercalation. These results indicate an inhibitory mechanism in which EB site-specifically binds substrate, creating a cleavage-resistant complex that can compete with free substrate for RNase III. This study also shows that RNase III recognition and cleavage of substrate can be uncoupled and supports an enzymatic mechanism of dsRNA cleavage involving cooperative but not obligatorily linked actions of the dsRBD and the catalytic domain.  相似文献   

10.
RNase III enzymes form a conserved family of proteins that specifically cleave double-stranded (dsRNA). These proteins are involved in a variety of cellular functions, including the processing of many non-coding RNAs, mRNA decay, and RNA interference. Yeast RNase III (Rnt1p) selects its substrate by recognizing the structure generated by a conserved NGNN tetraloop (G2-loop). Mutations of the invariant guanosine stringently inhibit binding and cleavage of all known Rnt1p substrates. Surprisingly, we have found that the 5' end of small nucleolar RNA 48 is processed by Rnt1p in the absence of a G2-loop. Instead, biochemical and structural analyses revealed that cleavage, in this case, is directed by a hairpin capped with an AAGU tetraloop, with a preferred adenosine in the first position (A1-loop). Chemical probing indicated that A1-loops adopt a distinct structure that varies at the 3' end where Rnt1p interacts with G2-loops. Consistently, chemical footprinting and chemical interference assays indicate that Rnt1p binds to G2 and A1-loops using different sets of nucleotides. Also, cleavage and binding assays showed that the N-terminal domain of Rnt1p aids selection of A1-capped hairpins. Together, the results suggest that Rnt1p recognizes at least two distinct classes of tetraloops using flexible protein RNA interactions. This underscores the capacity of double-stranded RNA binding proteins to use several recognition motifs for substrate identification.  相似文献   

11.
The structure of a ribonuclease III processing signal from bacteriophage T7 was examined by NMR spectroscopy, optical melting, and chemical and enzymatic modification. A 41 nucleotide variant of the T7 R1.1 processing signal has two Watson-Crick base-paired helices separated by an internal loop, consistent with its predicted secondary structure. The internal loop is neither rigidly structured nor completely exposed to solvent, and seems to be helical. The secondary structure of R1.1 RNA is largely insensitive to the monovalent cation concentration, which suggests that the monovalent cation sensitivity of secondary site cleavage by RNase III is not due to a low salt-induced RNA conformational change. However, spectroscopic data show that Mg2+ affects the conformation of the internal loop, suggesting a divalent cation binding site(s) within this region. The Mg(2+)-dependence of RNase III processing of some substrates may reflect not only a requirement for a divalent cation as a catalytic cofactor, but also a requirement for a local RNA conformation which is divalent cation-stabilized.  相似文献   

12.
The enzymatic cleavage of double-stranded (ds) RNA is an obligatory step in the maturation and decay of many cellular and viral RNAs. The primary agents of dsRNA processing are members of the ribonuclease III (RNase III) superfamily, which are highly conserved in eukaryotic and bacterial cells. Escherichia coli RNase III participates in the maturation of the ribosomal RNAs and in the maturation and decay of cellular and phage mRNAs. E. coli RNase III-dependent cleavage events can regulate gene expression by controlling mRNA stability and translational activity. RNase III recognizes its substrates and selects the scissile phosphodiester(s) by recognizing specific RNA sequence and structural elements, termed reactivity epitopes. Some E. coli RNase III substrates contain an internal loop, in which is located the single scissile phosphodiester. The specific features of the internal loop that establish the pattern of single-strand cleavage are not known. A mutational analysis of the asymmetric [4 nt/5 nt] internal loop of the phage T7 R1.1 substrate reveals that cleavage reactivity is largely independent of internal loop sequence. Instead, the [4/5] asymmetry per se is the primary determinant of cleavage of a single bond within the 5 nt strand of the internal loop. The T7 R1.1 internal loop lacks elements of local tertiary structure, as revealed by sensitivity to cleavage by terbium ion and by the ability of the internal loop to destabilize a small model duplex. The internal loop functions as a discrete structural element in that the pattern of cleavage can be controlled by the specific type of asymmetry. The implications of these findings are discussed in light of RNase III substrate function as a gene regulatory element.  相似文献   

13.
Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic.  相似文献   

14.
Members of the ribonuclease III superfamily of double-strand-specific endoribonucleases participate in diverse RNA maturation and decay pathways. Ribonuclease III of the gram-negative bacterium Escherichia coli processes rRNA and mRNA precursors, and its catalytic action can regulate gene expression by controlling mRNA translation and stability. It has been proposed that E.coli RNase III can function in a non-catalytic manner, by binding RNA without cleaving phosphodiesters. However, there has been no direct evidence for this mode of action. We describe here an RNA, derived from the T7 phage R1.1 RNase III substrate, that is resistant to cleavage in vitro by E.coli RNase III but retains comparable binding affinity. R1.1[CL3B] RNA is recognized by RNase III in the same manner as R1.1 RNA, as revealed by the similar inhibitory effects of a specific mutation in both substrates. Structure-probing assays and Mfold analysis indicate that R1.1[CL3B] RNA possesses a bulge– helix–bulge motif in place of the R1.1 asymmetric internal loop. The presence of both bulges is required for uncoupling. The bulge–helix–bulge motif acts as a ‘catalytic’ antideterminant, which is distinct from recognition antideterminants, which inhibit RNase III binding.  相似文献   

15.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

16.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

17.
W Sun  E Jun  A W Nicholson 《Biochemistry》2001,40(49):14976-14984
The ribonuclease III superfamily represents a structurally related group of double-strand (ds) specific endoribonucleases which play key roles in diverse prokaryotic and eukaryotic RNA maturation and degradation pathways. A dsRNA-binding domain (dsRBD) is a conserved feature of the superfamily and is important for substrate recognition. RNase III family members also exhibit a "catalytic" domain, in part defined by a set of highly conserved amino acids, of which at least one (a glutamic acid) is important for cleavage but not for substrate binding. However, it is not known whether the catalytic domain requires the dsRBD for activity. This report shows that a truncated form of Escherichia coli RNase III lacking the dsRBD (RNase III[DeltadsRBD]) can accurately cleave small processing substrates in vitro. Optimal activity of RNase III[DeltadsRBD] is observed at low salt concentrations (<60 mM Na(+)), either in the presence of Mg(2+) (>25 mM) or Mn(2+) ( approximately 5 mM). At 60 mM Na(+) and 5 mM Mn(2+) the catalytic efficiency of RNase III[DeltadsRBD] is similar to that of RNase III at physiological salt concentrations and Mg(2+). In the presence of Mg(2+) RNase III[DeltadsRBD] is less efficient than the wild-type enzyme, due to a higher K(m). Similar to RNase III, RNase III[DeltadsRBD] is inhibited by high concentrations of Mn(2+), which is due to metal ion occupancy of an inhibitory site on the enzyme. RNase III[DeltadsRBD] retains strict specificity for dsRNA, as indicated by its inability to cleave (rA)(25), (rU)(25), or (rC)(25). Moreover, dsDNA, ssDNA, or an RNA-DNA hybrid are not cleaved. Low (micromolar) concentrations of ethidium bromide block RNase III[DeltadsRBD] cleavage of substrate, which is similar to the inhibition seen with RNase III and is indicative of an intercalative mode of inhibition. Finally, RNase III[DeltadsRBD] is sensitive to specific Watson-Crick base-pair substitutions which also inhibit RNase III. These findings support an RNase III mechanism of action in which the catalytic domain (i) can function independently of the dsRBD, (ii) is dsRNA-specific, and (iii) participates in cleavage site selection.  相似文献   

18.
Ribonuclease III: new sense from nuisance.   总被引:6,自引:0,他引:6  
RNases play an important role in the processing of precursor RNAs, creating the mature, functional RNAs. The ribonuclease III family currently is one of the most interesting families of endoribonucleases. Surprisingly, RNase III is involved in the maturation of almost every class of prokaryotic and eukaryotic RNA. We present an overview of the various substrates and their processing. RNase III contains one of the most prominent protein domains used in RNA-protein recognition, the double-stranded RNA binding domain (dsRBD). Progress in the understanding of this domain is summarized. Furthermore, RNase III only recently emerged as a key player in the new exciting biological field of RNA silencing, or RNA interference. The eukaryotic RNase III homologues which are likely involved in this process are compared with the other members of the RNase III family.  相似文献   

19.
dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and indicates that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix α1. Our findings provide a unified model of binding site selection by this dsRBD.  相似文献   

20.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号