首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   

2.
D-海因酶是海因酶法制备D-氨基酸的关键酶。利用Burkholderic cepecia1003菌发酵产酶,所得海因酶纯化后,以Eupergit C250L为载体进行共价固定化。分别考察了酶液蛋白浓度、固定化时间对蛋白固定量和酶活回收率的影响以及固定化前后海因酶催化性质的变化。结果表明:较高的酶液蛋白浓度和较长的固定化时间均有助于改善海因酶的固定化效果;固定化可显著提高海因酶的最适作用温度,但对其最适作用pH影响不大;固定化后海因酶对D,L-BH和MH的米氏常数均有较大幅度的降低。固定化酶反应器的实验表明:40℃下,底物(D,L-BH)1.0 g.L-1,体积流速1.0 mL.min-1,经21 h转化,产物N-Phe质量浓度可达0.47 g.L-1,转化率达43.21%。  相似文献   

3.
聚乙二醇二缩水甘油醚(PEGDGE)作为双功能环氧试剂,在实验中被用于交联氨基载体LX-1000EA共价固定化海洋脂肪酶,经过处理后的载体共价固定化脂肪酶具有良好的效果。实验经过单因素初筛和正交试验,得到最佳的交联及固定化条件为0. 75%交联剂浓度、交联温度35℃、交联时间3h、载体量1. 25g、pH9. 0、固定化温度55℃、固定化时间1h。对LX-1000EAPEGDGE固定化酶与游离酶、戊二醛(GA)交联LX-1000HA-GA的固定化酶进行酶学性质的比较,发现LX-1000EA-PEGDGE固定化酶较游离酶最适反应温度未改变,与LX-1000HA-GA相同的是最适反应pH都由7. 0提高为8. 0。在最适条件中所测LX-1000EA-PEGDGE酶活达到78. 84U/g,固定化改变了游离酶的酸碱耐受性,热稳定性和操作稳定性较游离酶和LX-1000HA-GA固定化酶均有提高。LX-1000EA-PEGDGE的热稳定表现优异,在60℃孵育3h后保留90%酶活;使用5次后仍能残余50%酶活;保存30天酶活仍保留60%。首次使用新型双环氧交联剂PEGDGE交联有机氨基载体共价结合固定化脂肪酶,为更有效的固定化方法提供了技术支持,同时也发现交联剂对固定化酶的性质存在较大影响。  相似文献   

4.
两水相体系在发展中存在的关键问题是相体系回收困难.由于生产成本及降低污染的原因, 用过的相体系需要回收和重复使用.用环境敏感型溶解可逆聚合物形成可回用两水相体系是当前是为可行的回收方法。本文在光敏感可回用高聚物PNBC与pH敏感型可回用高聚物PADB形成的两水相体系中进行固定化青霉素酰化酶的相转移催化青霉素G产生6-APA的反应。在这个两水相体系中,通过优化,在1% NaCl 存在下,6-APA的分配系数可达5.78。催化动力学显示,达平衡的时间近7h,反应最高得率约85.3%(pH 7.8, 20℃)。较相近条件下的单水相反应得率提高近20%。在反应过程中,通过底物及产物的分配系数检测,发现底物分配系数变化不大,而产物6-APA及苯乙酸的分配系数发生很大变化,从而引起产物的得率变化。在两水相中,底物及产物主要分配在上相,固定化酶分配在下相,底物青霉素G进入下相经酶催化产生的6-APA及苯乙酸又转入上相,从而解除了青霉素酰化酶催化反应的底物及产物抑制作用,达到提高产物得率的效果。此外,采用固定化酶较固定化细胞效率高,占用下相体积小,较游离酶稳定性高,且完全单侧分配在下相。因此,在两水相中进行固定化酶的催化反应具有明显的优越性。形成两水相的高聚物PNBC通过488 nm 的激光照射或经滤光的450nm 光源照射得到回收;pH敏感型成相聚合物PADB可通等电点 4.1沉淀可实现循环利用,高聚物的回收率在95%-98%之间,按此回收率计算,聚合物可使用60次以上。  相似文献   

5.
青霉素酰化酶固定化前后动力学行为的比较   总被引:1,自引:0,他引:1  
在优化的固定化条件下,通过戊二醛交联直接将青霉素酰化酶固定化。在优化的环境条件下测定游离酶和两种固定化酶的动力学常数。结果表明,尽管固定化酶的米氏常数增大,但产物抑制作用减弱,裂解青霉素的实验结果表明,固定化酶更适合在工业上应用。  相似文献   

6.
以琼脂粉为基质制备金属螯合载体,并用于固定重组腈水解酶。研究发现:制备金属螯合载体最合适的金属离子为Zn2+。当Zn2+离子浓度0.3 mol/L、给酶量15.6 mg/g、固定化pH 8.0、固定化温度40℃时,制得的固定化酶活性最高。固定化酶最适反应温度为50℃、最适反应pH为7.0。当扁桃腈浓度为10 mmol/L、反应1 h时,固定化酶最大产率为0.041 mmol/(g·h);在反应12 h时,产物e.e.值可达到99%以上。固定化酶重复使用8次以后,酶活力仍保持在45%。  相似文献   

7.
固定化酶的研究是酶学工程学发展的需要,用完整细胞制备固定化酶用于工业生产已显示出极大的应用潜力,并已有综合文献报导。完整细胞固定化酶可免去酶分离纯化等复杂过程。酶在细胞内维持天然状态,稳定性增加,有利于连续发酵,便于迅速分离提取产物,提高产品质量。因此,已在国外广泛使用。由于卡氏酵母(Saccharamyes Carlsbergensis)的蔗糖酶含量高,具有工业上生产转化的重要性,国外固定化蔗糖酶已用于食品工业。一般固定化细胞用聚丙烯胺凝胶包埋,由于对食品可能有毒,不宜应用。本文报导了用海藻酸钙、琼脂、明胶三种无毒天然凝胶包埋卡氏酵母,制备固定化蔗糖(?)的方法,测定并比较三种固定化蔗糖酶的酶活性,相对比活性、转化率。并  相似文献   

8.
D-氨基酰化酶可用于D-氨基酸的生产,本研究利用来源于Microbacterium natoriense TNJL143-2的D-氨基酰化酶,分别通过琼脂糖包埋、介孔二氧化硅MCM-41和SBA-15吸附,制备了三种固定化酶,并对三种固定化酶的固定化条件、酶学性质、活性保持时间、重复使用次数、米氏常数等参数进行了研究。结果表明,MCM-41载体固定化酶的蛋白固定率为91.6%,SBA-15载体固定化酶的蛋白固定率为88.0%,琼脂糖包埋法蛋白固定率为79.5%。MCM-41、SBA-15以及琼脂糖三种载体固定化酶最适反应pH均为7.0,最适反应温度范围均为37℃。在固定化酶的活性保持时间以及重复利用活性方面,SBA-15固定化酶同样优于其他两种固定化酶。以D型苯丙氨酸(D-Phe)为底物时,琼脂糖包埋固定化酶的Km为28.8 mol/L,SBA-15固定化酶的Km为25.9 mol/L,MCM-41固定化酶的Km为25.0 mol/L。同时本文还探索了三种固定化酶的pH使用范围及酸碱稳定性、温度使用范围及热稳定性,结果显示,SBA-15作为固定化载体均表现出较广的适用范围及较高的稳定性。在不同条件的反应体系中,SBA-15固定化酶的蛋白损失率始终小于其他两种固定化酶。  相似文献   

9.
目前,工业微生物提供了大量的酶源。为了进一步提升酶的利用,固定化酶技术推动了生物催化过程的进展。固定化酶载体的研究为固定化酶技术发挥酶作用提供了更大的空间。近年来研究发现,智能型载体作用于酶的固定化方面较传统固定化酶方式具有独特的优势,增加了酶的负载量,稳定和提高了酶活力,降低了底物和产物抑制,并且简化了酶回收操作,是一种理想的酶固定化载体材料。本文针对对环境因素,例如温度、pH、离子强度、光以及磁等,敏感的智能固定化酶载体研究进展,从载体性质、应答机理、以及这些载体固定化酶的应用等方面进行综述。  相似文献   

10.
漆酶是一类含铜的多酚氧化酶,它能够催化许多酚类和非酚类物质的氧化.固定化漆酶能改善漆酶的稳定性,实现酶制剂的重复连续使用,具有重要意义.该文综述了漆酶固定化的各种方法,阐述了漆酶相关活性、机械性能和功能等内容,并对漆酶固定化在生物传感器方面的应用作了介绍.  相似文献   

11.
Catechol 1,2-dioxygenase [catechol: oxygen 1,2-oxidoreductase (decyclizing); EC 1.13.11.1], the aromatic intradiol ring-cleaving enzyme of Nocardia sp. NCIB 10503 prepared by freeze-drying cell-free extracts, was covalently attached to cyanogen bromide-activated Agarose. The properties of the immobilized enzyme were compared to those of the free enzyme preparation. Immobilization was shown to increase the thermal stability of the enzyme. The pH-activity profile was altered by immobilization. Various explanations for this phenomenon are discussed. The Vmax and Km of the enzyme were not significantly affected on immobilization. The enzyme had a broader substrate specificity than any previously reported catechol 1,2-dioxygenase, and this was largely unaltered by immobilization. The properties of the preparations are compared to those of other (free) catechol 1,2-dioxygenases. The results presented show that the immobilization of catechol 1,2-dioxygenase offers an attractive means for the production of cis,cis-muconate and novel substituted analogues.  相似文献   

12.
The chrysene-degrading bacterium Pseudoxanthomonas sp. PNK-04 was isolated from a coal sample. Three novel metabolites, hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid and salicylic acid, were identified by TLC, HPLC and MS. Key enzyme activities, namely 1-hydroxy-2-naphthoate hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase, were noted in the cell-free extract. These results suggest that chrysene is catabolized via hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid, salicylic acid and catechol. The terminal aromatic metabolite, catechol, is then catabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed catabolic pathway for chrysene degradation by strain PNK-04 is chrysene → hydroxyphenanthroic acid → 1-hydroxy-2-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol →cis,cis-muconic acid.  相似文献   

13.
Two Escherichia coli transformants with catechol 1,2-dioxygenase activity were selected from a gene library of the benzamide-assimilating bacterium Arthrobacter species strain BA-5-17, which produces four catechol 1,2-dioxygenase isozymes. A DNA fragment isolated from one transformant contained a complete open reading frame (ORF). The deduced amino acid sequence of the ORF shared high identity with hydroxyquinol 1,2-dioxygenase. An enzyme expressed by the ORF was purified to homogeneity and characterized. When hydroxyquinol was used as a substrate, the purified enzyme showed 6.8-fold activity of that for catechol. On the basis of the sequence identity and substrate specificity of the enzyme, we concluded that the ORF encoded hydroxyquinol 1,2-dioxygenase. When catechol was used as a substrate, cis,cis-muconic acid and 2-hydroxymuconic 6-semialdehyde, which were products by the intradiol and extradiol ring cleavage activities, respectively, were produced. These results showed that the hydroxyquinol 1,2-dioxygenase reported here was a novel dioxygenase that catalyzed both the intradiol and extradiol cleavage of catechol.  相似文献   

14.
Summary Growth ofNocardia sp. NCIB 10503 on a suitable aromatic substrate acts to induce a stable catechol 1,2-dioxygenase (EC 1.13.1.1. catechol: oxygen 1,2-oxidoreductase). This enzyme can be obtained without significant loss of activity, and free from the subsequent enzyme of the pathway, by simply freeze-drying a crude cell-free extract. The enzyme preparations can then be used to biotransform catechol quantitatively tocis, cis-muconate. Immobilising the enzyme by co-valently attaching it to cyanogen bromide-activated agarose increased its stability without significantly decreasing enzyme efficiency. The use of the immobilised crude enzyme material offers a cheap mode of generating a biocatalyst not only for the production ofcis, cis-muconate but also related substituted products.  相似文献   

15.
From humus obtained from Stuttgart, a bacterium was isolated with lawsone (2-hydroxy-1,4-naphthoquinone) as selective source of carbon. This bacterium is capable of utilizing lawsone as sole source of carbon and energy. Morphological and physiological characteristics of the bacterium were examined and it was identified as a strain of Pseudomonas putida. The organism is referred to as Pseudomonas putida L2. The degradation of lawsone by Pseudomonas putida L2 was investigated. Salicylic acid and catechol were isolated and identified as metabolites. In lawsone-induced cells of Pseudomonas putida L2, salicylic acid is converted to catechol by salicylate 1-monooxygenase. Catechol 1,2-dioxygenase catalyses ortho-fission of catechol which is then metabolized via the beta-ketoadipate pathway. Formation of cis,cis-muconate and beta-ketoadipate was demonstrated by enzyme assays. Salicylate 1-monooxygenase and catechol 1,2-dioxygenase are induced sequentially. The enzymes of the beta-ketoadipate pathway are also inducible. Naphthoquinone hydroxylase, however, was demonstrated in induced and non-induced cells. This constitutive enzyme enables Pseudomonas putida L2 to degrade various 1,4-naphthoquinones in experiments with resting cells.  相似文献   

16.
Metabolism of aromatic compounds by Caulobacter crescentus.   总被引:1,自引:1,他引:0       下载免费PDF全文
Cultures of Caulobacter crescentus were found to grow on a variety of aromatic compounds. Degradation of benzoate, p-hydroxybenzoate, and phenol was found to occur via beta-ketoadipate. The induction of degradative enzymes such as benzoate 1,2-dioxygenase, the ring cleavage enzyme catechol 1,2-dioxygenase, and cis, cis-muconate lactonizing enzyme appeared similar to the control mechanism present in Pseudomonas spp. Both benzoate 1,2-dioxygenase and catechol 1,2-dioxygenase had stringent specificities, as revealed by their action toward substituted benzoates and substituted catechols, respectively.  相似文献   

17.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

18.
冠秀芬  李钦 《微生物学报》1990,30(5):397-399
Catechol-1,2-dioxygenase (EC 1.13.11.1) catalyzes the degradation of catechol to cis, cis-muconic acid. The biochemical properties of catechol-1,2-dioxygenase from Pseudomonas putida 84103 were investigated. The optimum pH and temperature is 7.5-8.0 and 25-30 degrees C, respectively. Cu2+, Zn2+ inhibit the enzyme activity. The paper chromatograph and UV absorption spectrum of enzymatic reaction product are accordance with those of the standard muconic acid.  相似文献   

19.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

20.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号