首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S–28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barleyHordeum vulgareL. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 70% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

2.
This paper describes a series of winter wheat - winter barley disomic addition lines developed from hybrids between winter wheat line Triticum aestivum L. 'Martonvásári 9 kr1' and the German 2-rowed winter barley cultivar Hordeum vulgare L. 'Igri'. The barley chromosomes in a wheat background were identified from the fluorescent in situ hybridization (FISH) patterns obtained with various combinations of repetitive DNA probes: GAA-HvT01 and pTa71-HvT01. The disomic addition lines 2H, 3H, and 4H and the 1HS isochromosome were identified on the basis of a 2-colour FISH with the DNA probe pairs GAA-pAs1, GAA-HvT01, and pTa71-HvT01. Genomic in situ hybridization was used to confirm the presence of the barley chromosomes in the wheat genome. The identification of the barley chromosomes in the addition lines was further confirmed with simple-sequence repeat markers. The addition lines were also characterized morphologically.  相似文献   

3.
C Pedersen  P Langridge 《Génome》1997,40(5):589-593
Using the Aegilops tauschii clone pAs1 together with the barley clone pHvG38 for two-colour fluorescence in situ hybridization (FISH) the entire chromosome complement of hexaploid wheat was identified. The combination of the two probes allowed easy discrimination of the three genomes of wheat. The banding pattern obtained with the pHvG38 probe containing the GAA-satellite sequence was identical to the N-banding pattern of wheat. A detailed idiogram was constructed, including 73 GAA bands and 48 pAs1 bands. Identification of the wheat chromosomes by FISH will be particularly useful in connection with the physical mapping of other DNA sequences to chromosomes, or for chromosome identification in general, as an alternative to C-banding.  相似文献   

4.
FISH landmarks for barley chromosomes (Hordeum vulgare L.).   总被引:4,自引:0,他引:4  
Barley metaphase chromosomes (2n = 14) can be identified by fluorescence in situ hybridization (FISH) and digital imaging microscopy using heterologous 18S rDNA and 5S rDNA probe sequences. When these sequences are used together, FISH landmark signals were seen so that all 7 chromosomes were uniquely identified and unambiguously oriented. The chromosomal location of the landmark signals was determined by FISH to a barley trisomic series using the 18S and 5S probes labeled with different fluorophores. The utility of these FISH landmarks for barley physical mapping was also demonstrated when an Amy-2 cDNA clone and a BAC clone were hybridized with the FISH landmark probes.  相似文献   

5.
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C ∼ 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat–barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H–7H. Thus, the barley genome can be dissected into fractions representing only about 6–12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.  相似文献   

6.
A high-density BAC filter of Triticum monococcum was screened for the presence of a centromeric retrotransposon using the integrase region as a probe. Southern hybridization to the BAC digests using total genomic DNA probes of Triticum monococcum, Triticum aestivum, and Hordeum vulgare detected differentially hybridizing restriction fragments between wheat and barley. The fragments that hybridized to genomic DNA of wheat but not to that of barley were subcloned. Fluorescence in situ hybridization (FISH) analysis indicated that the clone pHind258 hybridized strongly to centromeric regions in wheat and rye and weakly to those in barley. The sequence of pHind258 was homologous to integrase and long terminal repeats of centromeric Ty3-gypsy retrotransposons of cereal species. Additionally, pHind258 has a pair of 192-bp direct repeats. FISH analysis indicated that the 192-bp repeat probe hybridized to centromeres of wheat and rye but not to those of barley. We found differential FISH signal intensities among wheat chromosomes using the 192-bp probe. In general, the A-genome chromosomes possess strong FISH signals, the B-genome chromosomes possess moderate signals, and the D-genome chromosomes possess weak signals. This was consistent with the estimated copy numbers of the 192-bp repeats in the ancestral species of hexaploid wheat.  相似文献   

7.
Karyotype and cytogenetic characteristics of 2 species of giant trahiras, Hopliasintermedius, S?o Francisco river basin, and Hopliasaimara, Arinos river (Amazon basin), were examined by conventional (C-banding, Ag-NOR, DAPI/CMA(3) double-staining) and fluorescent in situ hybridization (FISH) with 5S, 18S rDNA probes and cross-species Cot-1 DNA probing. Both species invariably had diploid chromosome number 2n = 50 and identical karyotypes composed of 10 pairs of metacentric and 15 pairs of submetacentric chromosomes. On the other hand, staining with base-specific fluorochromes (CMA(3), DAPI) and FISH mapping of repetitive DNA sequences showed extensive interspecific differences: while the genome of H. aimara had one submetacentric pair bearing CMA(3)-positive (DAPI-negative) sites, that of H. intermedius had 4 such pairs; while FISH with a 5S rDNA probe showed one (likely homologous) signal-bearing pair, that with 18S rDNA displayed one signal-bearing pair in H. intermedius and 2 such pairs in H. aimara. Cross-species FISH probing with Cot-1 DNA prepared from total DNA of both species showed no signals of Cot-1 DNA from H. aimara on chromosomes of H. intermedius but reciprocally (Cot-1 DNA from H. intermedius on chromosomes of H. aimara) displayed signals on at least 4 chromosome pairs. Present findings indicate (i) different composition of repetitive sequences around centromeres, (ii) different NOR phenotypes and (iii) distinct taxonomic status of both giant trahira species.  相似文献   

8.
Physical chromosome mapping by fluorescence in situ hybridization (FISH) is among the major lines of research on the human genome (as well as genomes of numerous other organisms). To localize particular genes or anonymous DNA sequences on individual chromosomes or chromosome regions, FISH was developed in the late 1980s and early 1990s, when the International Human Genome Project and the Russian program Human Genome were launched. Now FISH continues to play a prominent part in studies of the human genome. The review considers the major steps of FISH development in Russia, with special emphasis on the key roles of the Institute of Cytology and Genetics (Novosibirsk) and Engelhardt Institute of Molecular Biology (Moscow). Physical mapping of human chromosomes 3 and 13 by FISH is described in detail. The acquisition of FISH in Russia contributed to the progress in the related fields such as comparative animal genomics (ZOOFISH) and studies of plant chromosomes.  相似文献   

9.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

10.
The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid, Xa genome) and H. murinum ssp. leporinum (tetraploid, Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.  相似文献   

11.
Physical chromosome mapping by fluorescence in situ hybridization (FISH) is among the major lines of research on the human genome (as well as genomes of numerous other organisms). To localize particular genes or anonymous DNA sequences on individual chromosomes or chromosome regions, FISH was developed in the late 1980s and early 1990s, when the International Human Genome Project and the Russian program Human Genome were launched. Now FISH continues to play a prominent part in studies of the human genome. The review considers the major steps of FISH development in Russia with special emphasis on the key roles of the Institute of Cytology and Genetics (Novosibirsk) and Engelhardt Institute of Molecular Biology (Moscow). Physical mapping of human chromosomes 3 and 13 by FISH is described in detail. The promotion of FISH in Russia contributed to the progress in the related fields such as comparative animal genomics (ZOO-FISH) and studies of plant chromosomes.  相似文献   

12.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

13.
Hordeum vulgare, cultivated barley, and its wild relative, H. chilense, have several important traits that might be useful for wheat improvement. Here, in situ hybridization and barley expressed sequence tag (EST) markers were used to characterize and compare the chromosomes of H. chilense with those of H. vulgare. FISH with four repetitive DNA sequences, AG, AAG, 5S rDNA and 45S rDNA, was applied to the mitotic chromosomes of H. vulgare, H. chilense and available wheat-H. chilense addition and substitution lines. FISH with the AAG repeat differentiated the individual chromosomes of H. chilense and H. vulgare. The patterns of FISH signals in the two species differed greatly. The 45S rDNA signals were observed on two pairs of chromosomes in both species, while the 5S rDNA signals were observed on four pairs of chromosomes in H. vulgare and on one pair in H. chilense. The AG repeat showed FISH signals at the centromeric regions of all chromosomes of H. vulgare but none of the chromosomes of H. chilense. These results indicate that the chromosomes of the two species are highly differentiated. To study the homoeology between the two species, 209 EST markers of H. vulgare were allocated to individual chromosomes of H. chilense. One hundred and forty of the EST markers were allocated to respective chromosomes of H. chilense using the wheat-H. chilense addition and substitution lines. Twenty-six EST markers on average were allocated to each chromosome except to the chromosome 2H(ch)S, to which only 10 markers were allocated. Ninety percent of the allocated EST markers in H. chilense were placed on H. vulgare chromosomes of the same homo-eologous group, indicating that the expressed sequences of the two species were highly conserved. These EST markers would be useful for detecting chromatin introgressed from these species into the wheat genome.  相似文献   

14.
Southern and in situ hybridization were used to examine the chromosome constitution, genomic relationships, repetitive DNA sequences, and nuclear architecture in durum wheat x tritordeum hybrids (2n = 5x = 35), where tritordeum is the fertile amphiploid (2n = 6x = 42) between Hordeum chilense and durum wheat. Using in situ hybridization, H. chilense total genomic DNA hybridized strongly to the H. chilense chromosomes and weakly to the wheat chromosomes, which showed some strongly labelled bands. pHcKB6, a cloned repetitive sequence isolated from H. chilense, enabled the unequivocal identification of each H. chilense chromosome at metaphase. Analysis of chromosome disposition in prophase nuclei, using the same probes, showed that the chromosomes of H. chilense origin were in individual domains with only limited intermixing with chromosomes of wheat origin. Six major sites of 18S-26S rDNA genes were detected on the chromosomes of the hybrids. Hybridization to Southern transfers of restriction enzyme digests using genomic DNA showed some variants of tandem repeats, perhaps owing to methylation. Both techniques gave complementary information, extending that available from phenotypic, chromosome morphology, or isozyme analysis, and perhaps are useful for following chromosomes or chromosome segments during further crossing of the lines in plant breeding programs.  相似文献   

15.
大麦45S和5S rDNA定位及5S rDNA伸展纤维的FISH分析   总被引:7,自引:1,他引:6  
用荧光原位杂交技术对45S和5SrDNA在大麦(Hordeum vulgare L.)有丝分裂中期染色体进行了确定分析,较强的45SrDNA信号共有2对,分别分布在大麦的第1染色体的短臂和第2染色体的长臂。而5SrDNA则只有1对杂交信号,位于第3染色体的长臂,但信号较弱。用伸展DNA纤维的荧光原位杂交(Fiber—FISH)技术测定了5SrDNA在大麦的基因组中的拷贝数,计算出5SrDNA的拷贝数约为408~416。对大麦品种中rDNA位点数目的可变性进行了讨论。  相似文献   

16.
In situ hybridization was carried out to somatic cells of hexaploid Triticale “Badger”, lB/IR translocation line “Ning 8026” and IR(ID) substitution line “84056-1-36-1” using biotin-labelled total rye genomic DNA and wheat rDNA as probes, the results were as follows: 1. The probe containing the total genomic DNA from rye hybridized to the entire length of all rye chromosomes, as a result of the formation of a brown precipitate over the sites of hybridization, the rye chromosomes could be distinguished from wheat chromosomes counterstained by Wright’s solution, the distinguishable appearance of the wheat and rye chromosomes resulted in an efficient method of detecting rye chromosome or segments in wheat. 2. When the probe PTA 71 containing wheat ribosomal DNA was used to hybridize to somatic chromosomes of "Badger" and “84056-1-36-1”, six signals in “Badger” and eight in “84056-1-36-1” were observed on lB, 6B, 1R and SD, among which lB and 6B showed large in situ signals corresponding to many copies of the genes. 3. The expression behavior of wheat rDNA was found in interphase cells by in situ hybridization.  相似文献   

17.
M L Irigoyen  C Linares  E Ferrer  A Fominaya 《Génome》2002,45(6):1230-1237
Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C-14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C-14D interchange was also monitored in these lines.  相似文献   

18.
The genomic composition of Tricepiro, a synthetic forage crop.   总被引:4,自引:0,他引:4  
Chromosome in situ hybridization (FISH and GISH) is a powerful tool for determining the chromosomal location of specific sequences and for analysing genome organization and evolution. Tricepiro (2n = 6x = 42) is a synthetic cereal obtained by G. Covas in Argentina (1972), which crosses hexaploid triticale (2n = 6x = 42) and octoploid Trigopiro (2n = 8x = 56). Several years of breeding produced a forage crop with valuable characteristics from Secale, Triticum, and Thinopyrum. The aim of this work is to analyse the real genomic constitution of this important synthetic crop. In situ hybridization using total DNA of Secale, Triticum, and Thinopyrum as a probe (GISH) labelled with biotin and (or) digoxigenin showed that tricepiro is composed of 14 rye chromosomes and 28 wheat chromosomes. Small zones of introgression of Thinopyrum on wheat chromosomes were detected. The FISH using the rye repetitive DNA probe pSc 119.2 labelled with biotin let us characterize the seven pairs of rye chromosomes. Moreover, several wheat chromosomes belonging to A and B genomes were distinguished. Therefore, tricepiro is a synthetic hexaploid (2n = 6x = 42) being AABBRR in its genomic composition, with zones of introgression of Thinopyrum in the A genome of wheat.  相似文献   

19.
This study describes the use of the polymerase chain reaction for physical mapping of fish genes. A 287–base pair (bp) fragment of the 28S ribosomal RNA gene (28S rDNA) of channel catfish Ictalurus punctatus was isolated and sequenced with human-derived primers. The nucleotide (nt) sequence of this fragment was 20 bp shorter than that of the corresponding region of the human 28S rDNA. The gene was mapped to chromosomes of channel catfish by fluorescence in situ hybridization (FISH) and in situ polymerase chain reaction (ISPCR). A major locus and a minor locus of 28S rDNA were found on chromosomes of channel catfish. The major locus was associated with the active nucleolus organizer region (NOR) sites. The minor locus was highly resolved and not detectable by silver staining, suggesting that this locus was not involved in synthesis of ribosomal RNA and possessed fewer copies of 28S rDNA. Both loci contained GC-rich DNA elements that could be components of 28S rDNA repeated units. In this study, a potential method of comparative mapping of the channel catfish genome has been presented by using human-derived oligonucleotide sequences. These data demonstrate that ISPCR is highly specific and will be useful in physical mapping of fish genomes.  相似文献   

20.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号