首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
【背景】碱性蛋白酶是工业用酶中占比最大的酶类,广泛应用于清洁、食品、医疗等行业。近期研究发现碱性蛋白酶在生产生物活性肽方面有巨大潜力,这将进一步拓宽其在保健食品领域中的应用。【目的】利用枯草芽孢杆菌异源表达地衣芽孢杆菌来源的碱性蛋白酶SubC。【方法】通过筛选3种枯草芽孢杆菌宿主菌株(Bacillus subtilis 1A751、MA07、MA08)和6种信号肽(AmyE、AprE、NprE、Pel、YddT、YoqM),同时优化诱导剂浓度、发酵培养基和发酵时长,最终得到最优重组菌株MA08-AmyE-subCopt。【结果】重组菌株MA08-AmyE-subCopt的胞外酶活力为3.33×103 AU/mL,胞外蛋白分泌量为胞内可溶蛋白表达量的4倍,与携带野生型信号肽的对照组菌株WT相比,酶活提高了73.4%。【结论】异源碱性蛋白酶SubC在枯草芽孢杆菌中成功表达,为碱性蛋白酶SubC的表达和在保健食品领域的工业化应用提供了理论基础。  相似文献   

2.
【目的】克隆嗜热脱氮土壤芽孢杆菌中的β-葡萄糖苷酶基因bglB,在E.coli中异源表达,纯化并研究其酶学性质。【方法】利用PCR技术从嗜热脱氮土壤芽孢杆菌的基因组DNA中克隆得到bglB基因,将该基因克隆到表达载体pGEX-2TL上并在大肠杆菌BL21(DE3)中表达,对纯化后的β-葡萄糖苷酶的酶学性质及寡聚状态进行分析。【结果】重组表达的β-葡萄糖苷酶最适温度为65°C,最适pH为7.0,能在pH 5-10、60°C下稳定存在4 h,并能在较高的离子强度(880 mmol/L K+)下发挥其功能。Al3+离子对其有强烈的激活作用,Co2+有一定的抑制作用。最适反应条件下该酶比活力为0.043 IU/mg。该酶具有多种寡聚体形式,这些寡聚体均有β-葡萄糖苷酶活性。【结论】获得一个耐热耐盐的中性β-葡萄糖苷酶,为进一步研究β-葡萄糖苷酶的催化作用机理,提高其热稳定性提供一定的帮助。  相似文献   

3.
产碱性蛋白酶嗜碱芽孢杆菌的筛选及其研究   总被引:10,自引:0,他引:10  
利用造纸黑液对土样进行富集,筛选出3株碱性蛋白酶酶活力较高的嗜碱芽孢杆菌X1、X2、X3。对它们的生长曲线,产酶曲线,在不同C、N源、pH值、盐浓度下的产酶活力进行的研究表明:3株嗜碱芽孢杆菌(Bacillussp.JBX1、X2、X5)酶活力较高(达到100U/mL),X2最高酶活可达140U/mL。最适pH值为9.5,碳源中的蔗糖,氮源中的酵母浸提物和硝酸钠均利于产酶。X1、X5两株嗜碱芽孢杆菌均表现出较强的耐盐耐高渗透压的能力。X1在11%的NaCl浓度下生长良好,酶活仍然达到80U/mL以上。而X2和X5对温度的耐受性比较强,在经70℃处理15min后依然保持了80%以上的酶活力,所产蛋白酶为高温碱性蛋白酶,从而为进一步的应用和研究奠定了基础。  相似文献   

4.
土壤中高产蛋白酶菌株产酶条件及酶学性质   总被引:3,自引:2,他引:1  
【背景】微生物蛋白酶已经成为工业用蛋白酶的主要来源,筛选具有特殊环境适应性的微生物成为生物酶资源的开发热点。【目的】通过对青藏高原土壤微生物产蛋白酶菌株的筛选、优化及相关特性研究,寻找新的蛋白酶资源,为高原菌种资源利用提供科学依据。【方法】采用形态学和分子生物学对筛选菌株进行菌种鉴定,利用单因素试验和正交试验对菌株进行发酵条件优化及酶学性质的探究。【结果】筛选出一株高产蛋白酶菌株XC2,经鉴定菌株XC2为枯草芽孢杆菌(Bacillus subtilis)。XC2最优产酶条件:可溶性淀粉4.0%,牛肉膏1.0%,K~+0.6%,培养温度34°C、初始pH 7.0、接种量2.0%的条件下200 r/min振荡培养13 h,所产蛋白酶活力最高为638.5 U/mL。XC2所产蛋白酶最适反应温度60°C,最适pH9.0;40-50°C、pH8.0-10.0条件下酶活稳定性较高;Mn~(2+)对酶活力有明显激活作用,而Zn~(2+)、Cu~(2+)、Fe~(2+)、Fe3+对酶活力有明显抑制作用。【结论】枯草芽孢杆菌XC2有较强的产碱性蛋白酶的能力,具有较好的应用前景。  相似文献   

5.
嗜碱芽孢杆菌Bacillus sp. N16-5表达载体的构建   总被引:1,自引:0,他引:1  
【目的】构建可以在嗜碱芽孢杆菌Bacillus sp.N16-5中表达外源基因的表达载体。【方法】以枯草芽孢杆菌表达质粒pHCMC04为基本骨架,删除木糖诱导的启动子和木糖阻遏蛋白基因,分别插入枯草芽孢杆菌组成型强启动子P43和嗜碱芽孢杆菌N16-5的组成型启动子P EF,构建表达载体pABN165P43和pABN165P EF;将绿色荧光蛋白基因gfp作为报告基因连接至表达载体得到pABN165P43-gfp和pABN165P EF-gfp,利用原生质体转化法将其转化至Bacillus sp.N16-5,通过荧光显微镜和多功能荧光读板仪检测报告基因的表达情况。【结果】所构建的表达载体pABN165P43-gfp和pABN165P EF-gfp可以在Bacillus sp.N16-5中表达报告基因gfp,荧光定量数据显示,在7.5 h左右开始检测到绿色荧光蛋白的表达,从7.5 h到12 h荧光强度随时间增长迅速并在12 h左右达到最大,最大荧光值在7000左右。【结论】成功构建了2个嗜碱芽孢杆菌Bacillus sp.N16-5表达载体,实现了外源基因在嗜碱芽孢杆菌中的表达。  相似文献   

6.
角蛋白酶生产菌株的分离筛选与鉴定   总被引:1,自引:0,他引:1  
【目的】分离筛选具有高效脱毛能力的野生角蛋白酶生产菌株,开发无硫制革生物脱毛剂。【方法】以贮备原料皮的特定环境中的污水样品为菌株源、在含诱导物脱脂羊毛粉的培养基中的富集、筛选与评估其发酵液脱毛能力的多相筛选方法分离选育高产角蛋白酶野生菌株。通过形态学、生理生化特征,Biolog全自动分析以及16SrDNA基因序列分析等方法多尺度地鉴定目的菌株。【结果】定向筛选得到了一株高活力,无硫脱毛效率高的菌株。鉴定结果表明,该菌株为地衣芽孢杆菌属,故命名为地衣芽孢杆菌(Bacillus licheniformis)X-47。【结论】应用多相定位选育技术筛选出的菌株地衣芽孢杆菌(Bacillus licheniformis)X-47,产角蛋白酶活力高,脱毛效率高,对胶原作用力弱的特点,具有开发无硫脱毛生物助剂的潜力。  相似文献   

7.
【背景】深渊藤黄单胞菌XH031 (Luteimonas abyssi XH031)是从深海分离到的一株具有很强淀粉降解能力的细菌,前期实验显示其α-淀粉酶LamA在低温环境下仍能保持较高酶活力。若能够提升其热稳定性,会有更好的应用前景。【目的】分析钙离子的存在对LamA热稳定性的影响,并通过钙离子结合位点的关键氨基酸的定点突变,初步明确其作用机制。【方法】在不同的离子条件下检测LamA的热稳定性,利用生物信息学方法预测可能影响钙离子结合及耐热性的氨基酸位点,对目的氨基酸进行定点突变,表达和纯化突变蛋白,并进行功能鉴定。【结果】钙离子明显提高了LamA的热稳定性:在未添加钙离子时,于65°C处理30 min已完全失活;而在5 mmol/L钙离子条件下,于65°C处理30 min后仍具有36%的酶活力。对预测位点进行定点突变后,突变蛋白D200R和H233D/M234C完全失活;N120D、Q185E和T224D活性降低。在未添加钙离子时,突变蛋白稳定性受高温影响程度与野生型差别不大;而在钙离子条件下,N120D在65°C时的酶活力仅为野生型的27.8%,推测位点Asn120与钙离子的结合能够稳定低温酶LamA在较高温度下的结构。【结论】初步明确了钙离子可提升低温α-淀粉酶LamA的热稳定性,为今后相关酶类的工程改造提供理论基础。  相似文献   

8.
【背景】对来源于嗜热枯草芽孢杆菌(TBS2)的一种新型重组耐高温β-甘露聚糖酶(ReTMan26)基因序列进行分析,该基因中含有3个N-糖基化位点(N8、N26与N255),经毕赤酵母表达时可进行N-糖基化修饰。【目的】确定N-糖基化对ReTMan26稳定性的影响。【方法】通过构建ReTMan26蛋白质三维结构模型,初步分析N-糖基化对该酶稳定性的影响。在此基础上,利用天然蛋白去糖基化试剂盒除去ReTMan26的N-多糖链,获得去除N-糖基化的耐高温β-甘露聚糖酶(ReTMan26-DG),并对纯化后的ReTMan26及ReTMan26-DG进行相应的稳定性对比检测。【结果】ReTMan26与ReTMan26-DG的最适反应pH均为6.0,但在pH1.5-9.0范围内,ReTMan26的稳定性比ReTMan26-DG有小幅提高。ReTMan26的最适反应温度为60°C,比ReTMan26-DG高5°C;ReTMan26经100°C处理10 min,剩余酶活为58.6%,而ReTMan26-DG经93°C处理10 min,剩余酶活为58.2%,100°C处理10min则完全失活。经胃蛋白酶及胰蛋白酶在37°C处理2h后,ReTMan26的剩余酶活分别为70.5%及91.2%,比ReTMan26-DG分别提高了23.7%及25.6%。【结论】N-糖基化可提高ReTMan26的pH稳定性、耐热稳定性及抗蛋白酶消化性能。  相似文献   

9.
【背景】琼胶酶是一种多糖水解酶,在保健食品、医药、科研及化妆品等行业极具价值。本实验室发现来源自嗜琼胶卵链菌(Catenovulumagarivorans)的β-琼胶酶YM01-3具有较高的酶活性,在最适条件下的比酶活可达到1.14×10~4U/mg。【目的】探讨不同位点的突变对β-琼胶酶YM01-3酶活力的作用,发现影响其酶活力的新位点。【方法】通过易错PCR在短芽孢杆菌(Bacillus brevis)表达系统中构建随机突变文库,从约10 000个克隆中筛选出227株有效突变体,从中选取80株进行测序。【结果】对突变体序列进行分析和定点突变验证发现,137位和237位氨基酸发生突变后酶活力丧失90%以上。【结论】位于催化腔内的137位和237位氨基酸,对于维持β-琼胶酶YM01-3酶活力具有重要作用。该研究结果为β-琼胶酶的催化机理研究及分子改造提供了借鉴。  相似文献   

10.
李丹  黄非  夏梦芸  蒋彦  杨毅 《微生物学报》2013,53(11):1240-1250
摘要:【目的】从环境中分离筛选产蛋白酶、降解蛋白质的菌株,寻找使用价值较高的碱性蛋白酶。【方法】通过酪蛋白平板法分离筛选产蛋白酶菌株,经生理生化方法及16S rDNA 基因序列鉴定菌株;利用简并引物及基因组步移克隆蛋白酶完整开放阅读框;蛋白酶前体蛋白及成熟肽序列在大肠杆菌(Escherichia coli) BL21(DE3)中进行重组表达;纯化活性蛋白酶后,利用化学合成多肽底物(succinyl-Ala-Ala-Pro-Phe-p-nitroanilide)检测酶活性质及其催化活力。【结果】分离到的菌株L010被鉴定命名为芽胞杆菌( Bacillus sp.)L010;蛋白酶开放阅读框包含了1149个碱基,编码382个氨基酸,氨基酸序列按其功能分为N端的30个氨基酸残基组成的信号肽,77个氨基酸残基构成的前导肽,C端275个氨基酸残基组成的成熟肽;此蛋白属于丝氨酸蛋白酶家族中枯草杆菌蛋白酶类(Subtilisins)成员,并命名为SprD;SprD的前体蛋白在大肠杆菌(Escherichia coli)BL21(DE3)中重组表达时,在前导肽辅助下自加工为活性蛋白酶;SprD呈现出较高的催化活力,其反应最适条件为温度70℃,pH9-10。【结论】SprD在碱性(pH 7.0- 10.0)、中高温(25℃-60℃)条件下的稳定性及较高的催化能力使其具有一定的研究和潜在利用价值。  相似文献   

11.
We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83 degrees C (3.5 min) and temperature optimum for activity (Topt, 76 degrees C) are identical with those of thermitase. The Topt of the evolved enzyme is 17 degrees C higher and its half-life at 65 degrees C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90 degrees C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity.  相似文献   

12.
alpha-Amylase (LAMY) from alkaliphilic Bacillus sp. strain KSM-1378 is a novel semi-alkaline enzyme which has 5-fold higher specific activity than that of a Bacillus licheniformis enzyme. The Arg124 in LAMY was replaced with proline by site-directed mutagenesis to increase thermostability of the enzyme. The wild-type and engineered LAMYs were very similar with respect to specific activity, kinetic values, pH-activity curve, and degree of inhibition by chelating reagents. Thermostability and structure stiffness of LAMYs as measured by fluorescence were increased by the proline substitution. The change of Arg124 to proline is assumed to stabilize the loop region involving amino acid residues from 122 to 134. This is the first report that thermostability of an alpha-amylase is improved by proline substitution.  相似文献   

13.
Keratinases are proteolytic enzymes capable of degrading insoluble keratins. The importance of these enzymes is being increasingly recognized in fields as diverse as animal feed production, textile processing, detergent formulation, leather manufacture, and medicine. To enhance the thermostability of Bacillus licheniformis BBE11-1 keratinase, the PoPMuSiC algorithm was applied to predict the folding free energy change (ΔΔG) of amino acid substitutions. Use of the algorithm in combination with molecular modification of homologous subtilisin allowed the introduction of four amino acid substitutions (N122Y, N217S, A193P, N160C) into the enzyme by site-directed mutagenesis, and the mutant genes were expressed in Bacillus subtilis WB600. The quadruple mutant displayed synergistic or additive effects with an 8.6-fold increase in the t 1/2 value at 60 °C. The N122Y substitution also led to an approximately 5.6-fold increase in catalytic efficiency compared to that of the wild-type keratinase. These results provide further insight into the thermostability of keratinase and suggest further potential industrial applications.  相似文献   

14.
The SH groups of glutamine synthetase [EC 6.3.1.2] from Bacillus stearothermophilus were modified with 5, 5'-dithiobis(2-nitrobenzoic acid) in order to determine the number of SH groups in the molecule as well as the effect of the modification on the enzyme activity. Three SH groups per subunit were detected after complete denaturation of the enzyme with 6 M urea, one of which was essential for the enzyme activity in view of its reactivity with 5, 5'-dithiobis(2-nitrobenzoic acid) on addition of MgCl2 with loss of the activity. The CD spectra of the modified enzyme in the near ultraviolet region changed from that of the native enzyme, indicating that aromatic amino acid residues were affected by modification of the SH group. The fluorescence derived from tryptophanyl residue(s) was quenched depending on the extent of modification of the SH group, suggesting that the tryptophanyl residue(s) was located in the proximity of the SH group. The thermostability of the enzyme was remarkably decreased by modification of the SH group.  相似文献   

15.
《Process Biochemistry》2014,49(9):1538-1542
The keratinase from Bacillus licheniformis BBE11-1 is a serine protease and expressed as a pre-pro-precursor. To produce a mature and active keratinase, the propeptide must be cleaved on the C-terminal via cis or trans. In this study, to enhance the production of keratinase in Bacillus subtilis, single amino acid substitutions, single residue deletions and linkers were introduced at the C-terminus of the propeptide. The results showed that optimizing the residue of cleavage site of propeptide will affect the cleavage efficiency of propeptide, and the mature enzyme yield of Leu(P1)Ala mutant increases 50% compared with the wild-type. In addition, inserting linkers and deleting individual residues at the C-terminal of the propeptide decreases the mature keratinase production. Our results indicated that the primary structure of the C-terminus of propeptide is crucial for the mature keratinase production. Propeptide engineering at C-terminus may be an effective approach to increase the yield of keratinase.  相似文献   

16.
Asparagine deamidation is one of the important determinants of protein thermostability. Here, structure based mutagenesis has been done in order to probe the role of Asn residues in thermostability of a Ca independent Bacillus sp. KR-8104 α-amylase (BKA). Residues involved in potential deamidation processes have been selected and replaced using a site directed mutagenesis. Fourteen different variants were tested for thermostability by measuring residual activities after incubation at high temperature. In comparison to the wild-type enzyme, four mutated variants are able to increase the half life of the protein at high temperatures. The highest stabilization resulted from the substitution of asparatate in place of asparagine at position 112, leading to a nearly fivefold increase of the enzyme's half-life at 70°C. Also replacement of Asn129 to aspartic acid and Asn312 to serine markedly increased the half-life of the enzyme at 70°C indicating that the deamination of these residues may have a deleterious effect on BKA.  相似文献   

17.
Transglutaminase (TGase) is an important industrial enzyme that catalyzes the cross-linking of proteins. In this study, the N-terminal residues were deleted and substituted to improve the activity and thermostability of Streptomyces hygroscopicus TGase. Seven N-terminal residues of TGase were chosen to be deleted individually. The mutated TGase missing the first four residues showed an increase in specific activity of 32.92%. The fifth residue (E5) in the N-terminus was then selected for substitution with the 19 other amino acids. The mutant replacing the fifth residue with an aspartic acid exhibited a 1.85-fold higher specific activity and a 2.7-fold longer half-life at 50 °C when compared with the wild-type enzyme. The melting temperature of the mutated TGase increased from 68.9 to 79.1 °C by circular dichroism spectroscopy analysis. This study showed that substitution combined with deletion of the N-terminal amino acids could enhance the activity and thermostability of TGase.  相似文献   

18.
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75 degrees C, which was 15 degrees C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9 degrees C. The half-life of ThMA-DM was 172 min at 80 degrees C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.  相似文献   

19.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.  相似文献   

20.
The thermostability of potato type L alpha-glucan phosphorylase (EC 2.4.1.1) was enhanced by random and site-directed mutagenesis. We obtained three single-residue mutations-Phe39-->Leu (F39L), Asn135-->Ser (N135S), and Thr706-->Ile (T706I)-by random mutagenesis. Although the wild-type enzyme was completely inactivated, these mutant enzymes retained their activity even after heat treatment at 60 degrees C for 2 h. Combinations of these mutations were introduced by site-directed mutagenesis. The simultaneous mutation of two (F39L/N135S, F39L/T706I, and N135S/T706I) or three (F39L/N135S/T706I) residues further increased the thermostability of the enzyme, indicating that the effect of the replacement of the residues was cumulative. The triple-mutant enzyme, F39L/N135S/T706I, retained 50% of its original activity after heat treatment at 65 degrees C for 20 min. Further analysis indicated that enzymes with a F39L or T706I mutation were resistant to possible proteolytic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号