首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624. When the kraft pulp was treated with partially purified MnP in the presence of MnSO4, Tween 80, and sodium malonate with continuous addition of H2O2 at 37°C for 24 h, the pulp brightness increased by about 10 points and the kappa number decreased by about 6 points compared with untreated pulp. The pulp brightness was also increased by 43 points to 75.5% by multiple (six) treatments with MnP combined with alkaline extraction. Our results indicate that in vitro degradation of residual lignin in hardwood kraft pulp with MnP is possible.  相似文献   

2.
Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases.  相似文献   

3.
The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching.  相似文献   

4.
Previous study has shown that a crude manganese peroxidase (MnP) preparation from the fungus could bleach oxygen-alkaline treated hardwood kraft pulp (OKP) with manganese, glucose, and glucose oxidase. Using purified MnP instead of the crude one also did OKP bleaching with Tween 20. We conclude that MnP is important in this fungal bleaching system.  相似文献   

5.
Manganese dependent peroxidase (MnP) is the main enzyme implicated in the biobleaching of kraft pulps by white rot fungi. The goal of this study was to evaluate the Mn requirement for biobleaching of eucalyptus oxygen delignified kraft pulp (OKP) by various white rot fungi: Trametes versicolor, Phanerochaete sordida, Phlebia radiata, Stereum hirsutum and Bjerkandera sp. strain BOS55. All of the strains tested produced MnP and provided extensive bleaching of OKP when 33 μM Mn was included in the medium. Bjerkandera sp. strain BOS55 was the only strain that also displayed MnP production and biobleaching activity of EDTA-extracted OKP in the complete absence of Mn. However, MnP and biobleaching activity in the absence of Mn was dependent on the presence of organic acids in the medium. The fact the biobleaching was correlated to MnP activity irrespective of whether Mn was present or absent suggests that there may be roles for MnP in Bjerkandera under Mn-deficient conditions. Although manganese-independent peroxidase (MIP) and lignin peroxidase (LiP) were also detected, the titres were much smaller in comparison with those of MnP, so their relative role in biobleaching can be predicted to have a minor importance in comparison with MnP. Only in the case of Bjerkandera, was the expression of LiP stimulated in the presence of oxalate but final brightness was not substantially affected.  相似文献   

6.
Previous work has shown that Trametes (Coriolus) versicolor bleaches kraft pulp brownstock with the concomitant release of methanol. In this work, the fungus is shown to produce both laccase and manganese peroxidase (MnP) but not lignin peroxidase during pulp bleaching. MnP production was enhanced by the presence of pulp and/or Mn(II) ions. The maximum level of secreted MnP was coincident with the maximum rate of fungal bleaching. Culture filtrates isolated from bleaching cultures produced Mn(II)- and hydrogen peroxide-dependent pulp demethylation and delignification. Laccase and MnP were separated by ion-exchange chromatography. Purified MnP alone produced most of the demethylation and delignification exhibited by the culture filtrates. On the basis of the methanol released and the total and phenolic methoxyl contents of the pulp, it appears that MnP shows a preference for the oxidation of phenolic lignin substructures. The extensive increase in brightness observed in the fungus-treated pulp was not found with MnP alone. Therefore, either the MnP effect must be optimized or other enzymes or compounds from the fungus are also required for brightening.  相似文献   

7.
Bjerkandera sp. strain BOS55 is a white rot fungus that can bleach EDTA-extracted eucalyptus oxygen-delignified kraft pulp (OKP) without any requirement for manganese. Under manganese-free conditions, additions of simple physiological organic acids (e.g., glycolate, glyoxylate, oxalate, and others) at 1 to 5 mM stimulated brightness gains and pulp delignification two- to threefold compared to results for control cultures not receiving acids. The role of the organic acids in improving the manganese-independent biobleaching was shown not to be due to pH-buffering effects. Instead, the stimulation was attributed to enhanced production of manganese peroxidase (MnP) and lignin peroxidase (LiP) as well as increased physiological concentrations of veratryl alcohol and oxalate. These factors contributed to greatly improved production of superoxide anion radicals, which may have accounted for the more extensive biobleaching. Optimum biobleaching corresponded most to the production of MnP. These results suggest that MnP from Bjerkandera is purposefully produced in the absence of manganese and can possibly function independently of manganese in OKP delignification. LiP probably also contributed to OKP delignification when it was present.  相似文献   

8.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

9.
Studies on mediators of manganese peroxidase for bleaching of wood pulps   总被引:3,自引:0,他引:3  
In order to enhance the bleaching effect of manganese peroxidase (MnP), unsaturated fatty acids, thiol-containing compounds and various other organic compounds were applied in pulp bleaching experiments with MnP. Thiol-containing compounds did not improve the pulp bleaching effect by MnP. Some unsaturated fatty acids, linoleic acid and linolenic acid provided a better pulp bleaching effect than Tween 80. The correlation between the number of C=C bonds in a fatty acid and its pulp bleaching effect was also investigated. The MnP pulp bleaching capability was shown to depend on the carboxylic acid used. A combination of Tween 80 and a carboxylic acid resulted in higher pulp brightness than that obtained with Tween 80 alone. A laccase mediator, 3-hydroxy-1,2,3-benzotriazin-4(3H)-one, could also enhance the MnP pulp bleaching effect.  相似文献   

10.
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn(2+) to Mn(3+), as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn(3+) complexes were produced at 0.15, 0.05, and 0.10 micromol/min/mg of protein, respectively. Concomitantly, application of oxalate and malonate, but not pyrophosphate, led to H(2)O(2) formation and tetranitromethane (TNM) reduction indicative for the presence of superoxide anion radical. Employing oxalate, H(2)O(2) production, and TNM reduction significantly exceeded those found for malonate. Evidence is provided that, in the presence of oxalate or malonate, laccase reactions involve enzyme-catalyzed Mn(2+) oxidation and abiotic decomposition of these organic chelators by the resulting Mn(3+), which leads to formation of superoxide and its subsequent reduction to H(2)O(2). A partially purified manganese peroxidase (MnP) from the same organism did not produce Mn(3+) complexes in assays containing 1 mM Mn(2+) and 100 mM oxalate or malonate, but omitting an additional H(2)O(2) source. However, addition of laccase initiated MnP reactions. The results are in support of a physiological role of laccase-catalyzed Mn(2+) oxidation in providing H(2)O(2) for extracellular oxidation reactions and demonstrate a novel type of laccase-MnP cooperation relevant to biodegradation of lignin and xenobiotics.  相似文献   

11.
The fungus SKB-1152 bleaches oxygen-alkaline treated hard wood kraft pulp (OKP) rapidly. In the initial phase of fungal treatment, maximum production of manganese peroxidase (MnP) was observed. The filtrate from a 1-day fungal treatment could bleach OKP when manganese, glucose, and glucose oxidase were added. A possible role of MnP in the initial fungal bleaching process is suggested.  相似文献   

12.
A number of hydroxamic acids have been synthesized and investigated as laccase-mediators for pulp bleaching. As compared with N-hydroxyacetanilide (NHA), one of the most effective laccase-mediators reported so far, N-(4-cyanophenyl)acetohydroxamic acid (NCPA), resulted in the highest brightness and lowest kappa number of hardwood kraft pulp of all the laccase-mediators studied. The bleaching efficacy of a laccase/7-cyano-4-hydroxy-2H-1,4-benzoxazin-3-one system was also comparable with that of a laccase/NHA system. A laccase/NCPA system was further studied for the bleaching of unbleached softwood kraft pulp. The effects of pulp consistency, laccase dosage, NCPA dosage, incubation time, and oxygen pressure on the bleaching efficacy of a laccase/NCPA system were studied.  相似文献   

13.
Full-length and truncated forms of a modular thermostable xylanase (EC 3.2.1.8., glycoside hydrolase family 10) were used in bleaching sequences of hardwood and softwood kraft pulps. Enzymatic treatment led to brightness gains of all pulps but the result depended on the pulp source. The presence of the additional domains in the full-length enzyme (including carbohydrate-binding modules) did not improve the bleaching process. No significant change in viscosity was seen after enzyme treatments indicating an unaffected pulp fibre length.  相似文献   

14.
The white rot basidiomycete Trametes (Coriolus) versicolor can substantially increase the brightness and decrease the lignin content of washed, unbleached hardwood kraft pulp (HWKP). Monokaryotic strain 52J was used to study how HWKP and the lignin in HWKP affect the carbon metabolism and secretions of T. versicolor. Earlier work indicated that a biobleaching culture supernatant contained all components necessary for HWKP biobleaching and delignification, but the supernatant needed frequent contact with the fungus to maintain these activities. Thus, labile small fungal metabolites may be the vital biobleaching system components renewed or replaced by the fungus. Nearly all of the CO2 evolved by HWKP-containing cultures came from the added glucose, indicating that HWKP is not an important source of carbon or energy during biobleaching. Carbon dioxide appeared somewhat earlier in the absence of HWKP, but the culture partial O2 pressure was little affected by the presence of pulp. The presence of HWKP in a culture markedly increased the culture's production of a number of acidic metabolites, including 2-phenyllactate, oxalate, adipate, glyoxylate, fumarate, mandelate, and glycolate. Although the total concentration of these pulp-induced metabolites was only 4.3 mM, these compounds functioned as effective manganese-complexing agents for the manganese peroxidase-mediated oxidation of phenol red, propelling the reaction at 2.4 times the rate of 50 mM sodium malonate, the standard chelator-buffer. The presence of HWKP in a culture also markedly stimulated fungal secretion of the enzymes manganese peroxidase, cellulase, and cellobiose-quinone oxidoreductase, but not laccase (phenol oxidase) or lignin peroxidase.  相似文献   

15.
Three selected alkali-based organosolv pulps (alkali-sulfite-anthraquinone-methanol (ASAM), alkali-anthraquinone-methanol (organocell) and ethanol-soda) from agrofibre crop giant reed (Arundo donax L.) were bleached by an ozone-based TCF (totally chlorine- free) bleaching sequence AZE(R)QP (where A is an acidic pulp pre-treatment, Z is an ozone stage, (E(R)) is an alkaline extraction in the presence of reducing agent, Q is a pulp chelating, P is a hydrogen peroxide stage) without oxygen pre-bleaching, and compared with a conventional kraft pulp used as a reference. The different response on bleaching conditions within each bleaching stage was noted for all tested pulps. The pulp bleachability, in terms of brightness improvement or lignin removal per unit of applied chemicals, was found higher for the organocell pulp. The ASAM and ethanol-soda pulps showed the highest bleaching selectivity, expressed by viscosity loss per unit of lignin removed or brightness improved. The overall bleaching results of organosolv pulps were superior to kraft.  相似文献   

16.
To clarify the role of excreted extracellular enzymes during long-term incubation in a pulp biobleaching system with white rot fungi, we developed a cultivation system in which a membrane filter is used; this membrane filter can prevent direct contact between hyphae and kraft pulp, but allows extracellular enzymes to attack the kraft pulp. Phanerochaete sordida YK-624 brightened the pulp 21.4 points to 54.0% brightness after a 5-day in vitro treatment; this value was significantly higher than the values obtained with Phanerochaete chrysosporium and Coriolus versicolor after a 7-day treatment. Our results indicate that cell-free, membrane-filtered components from the in vitro bleaching system are capable of delignifying unbleached kraft pulp. Obvious candidates for filterable reagents capable of delignifying and bleaching kraft pulp are peroxidase and phenoloxidase proteins. The level of secreted manganese peroxidase activity in the filterable components was substantial during strain YK-624 in vitro bleaching. A positive correlation between the level of manganese peroxidase and brightening of the pulp was observed.  相似文献   

17.
The effect of several organic acids on the oxidation of Mn(II) catalyzed by manganese peroxidase was studied. Reactivities of manganese peroxidase and chemically prepared Mn(III) organic acid complexes towards phenolic compounds were compared. If lactate appears to be the best complexant for manganese peroxidase activity, chemically prepared Mn(III)—lactate complex is a less effective oxidant towards phenolic compounds than other Mn(III)—complexes. Our results agree with the hypothesis that certain organic acids are involved in the catalytic cycle of manganese peroxidase. Malonate and lactate seem to be the most attractive complexants for practical applications of manganese peroxidase and were used in enzymatic treatment of hardwood kraft pulp. Bleaching of kraft pulp was studied and after alkaline extraction, a significant decrease of kappa number was measured. The bleaching was enhanced in lactate buffer.  相似文献   

18.
The white-rot fungus Coriolus versicolor increased the brightness of hardwood kraft pulp by two mechanisms depending on the concentration of available nitrogen. In low-nitrogen conditions, the brightening process was a chemical effect mediated by the fungus, associated with the removal of residual lignin in the pulp; kappa number was used as an indicator of lignin concentration. A five-day treatment in low-nitrogen conditions increased the brightness of hardwood kraft pulp from 36.2 to 54.5%, with a corresponding decrease in kappa number from 12.0 to 8.5, equivalent to a reduction in the lignin concentration from ca. 2.0% (wt/wt) to ca. 1.4% (wt/wt). Under these conditions, we concluded that the brightening of the pulp was a secondary metabolic event initiated after the depletion of available nitrogen. This method of brightening has been described as bleaching or biobleaching. By contrast, in high-nitrogen conditions, the brightening was a physical effect associated with the dilution of the dark pulp fibers by the relatively high levels of brighter fungal mycelium produced. Since this method of brightening was not evidently associated with lignin removal, it cannot be described as bleaching. In pulp samples brightened in high-nitrogen conditions, as brightness increased, there was a corresponding increase in kappa number. This observation was explained by the consumption of potassium permanganate by the fungal mycelium, which interfered with kappa number determinations at high fungal biomass levels.  相似文献   

19.
A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.  相似文献   

20.
The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-dependent peroxidase (MnP) production. However, the biobleaching was not affected by the Mn nutrient regimen, ranging from 1,000 (mu)M added Mn to below the detection limit of 0.26 (mu)M Mn in EDTA-extracted pulp medium. The lowest Mn concentration tested was at least several orders of magnitude lower than the K(infm) known for MnP. Consequently, it was concluded that Mn is not required for biobleaching in Bjerkandera sp. strain BOS55. Nonetheless, fast protein liquid chromatography profiles indicated that MnP was the predominant oxidative enzyme produced even under culture conditions in the near absence of manganese. High nitrogen (22 mM N) and exogenous veratryl alcohol (2 mM) repressed biobleaching in Mn-deficient but not in Mn-sufficient culture medium. No correlation was observed between the titers of extracellular peroxidases and the biobleaching. However, the decolorization rate of the polyaromatic dye Poly R-478 was moderately correlated to the biobleaching under a wide range of Mn and N nutrient regimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号