首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching.  相似文献   

2.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO(inf4) in the presence of oxalate, malonate, or gluconate as manganese chelator. When the pulp was treated without the addition of MnSO(inf4), the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate, a good manganese chelator. Residual MnP activity decreased faster during the bleaching with MnP without MnSO(inf4) in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO(inf2) which already existed in the pulp or was produced from Mn(sup2+) by oxidation with MnP and thus supplied Mn(sup2+) to the MnP system. The presence of gluconate, produced by the H(inf2)O(inf2)-generating enzyme glucose oxidase, also improved the pulp brightness without the addition of MnSO(inf4), although treatment with gluconate was inferior to that with oxalate with regard to increase of brightness. It can be concluded that bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, is possible in the presence of oxalate, a good manganese chelator and reducing reagent.  相似文献   

3.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase–HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase–HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols–filipin signals were almost completely absent.  相似文献   

4.
Previous work has shown that Trametes (Coriolus) versicolor bleaches kraft pulp brownstock with the concomitant release of methanol. In this work, the fungus is shown to produce both laccase and manganese peroxidase (MnP) but not lignin peroxidase during pulp bleaching. MnP production was enhanced by the presence of pulp and/or Mn(II) ions. The maximum level of secreted MnP was coincident with the maximum rate of fungal bleaching. Culture filtrates isolated from bleaching cultures produced Mn(II)- and hydrogen peroxide-dependent pulp demethylation and delignification. Laccase and MnP were separated by ion-exchange chromatography. Purified MnP alone produced most of the demethylation and delignification exhibited by the culture filtrates. On the basis of the methanol released and the total and phenolic methoxyl contents of the pulp, it appears that MnP shows a preference for the oxidation of phenolic lignin substructures. The extensive increase in brightness observed in the fungus-treated pulp was not found with MnP alone. Therefore, either the MnP effect must be optimized or other enzymes or compounds from the fungus are also required for brightening.  相似文献   

5.
Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification.  相似文献   

6.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase-HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase-HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols-filipin signals were almost completely absent.  相似文献   

7.
Bjerkandera sp. strain BOS55 is a white rot fungus that can bleach EDTA-extracted eucalyptus oxygen-delignified kraft pulp (OKP) without any requirement for manganese. Under manganese-free conditions, additions of simple physiological organic acids (e.g., glycolate, glyoxylate, oxalate, and others) at 1 to 5 mM stimulated brightness gains and pulp delignification two- to threefold compared to results for control cultures not receiving acids. The role of the organic acids in improving the manganese-independent biobleaching was shown not to be due to pH-buffering effects. Instead, the stimulation was attributed to enhanced production of manganese peroxidase (MnP) and lignin peroxidase (LiP) as well as increased physiological concentrations of veratryl alcohol and oxalate. These factors contributed to greatly improved production of superoxide anion radicals, which may have accounted for the more extensive biobleaching. Optimum biobleaching corresponded most to the production of MnP. These results suggest that MnP from Bjerkandera is purposefully produced in the absence of manganese and can possibly function independently of manganese in OKP delignification. LiP probably also contributed to OKP delignification when it was present.  相似文献   

8.
Biological bleaching of kraft pulps by white-rot fungi and their enzymes   总被引:9,自引:0,他引:9  
Abstract: The use of white-rot fungi, especially Trametes versicolor and isolate IZU-154, to delignify and brighten kraft pulps is reviewed. The fungal treatments are effective but slow; the responsible enzymes are being studied with a view to accelerating the process. Manganese peroxidase, or laccase with a co-substrate, can demethylate and partially solubilize the lignin in pulps, mimicking the early steps of the fungal delignification.  相似文献   

9.
The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor.  相似文献   

10.
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).  相似文献   

11.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

12.
Laccase: new functions for an old enzyme   总被引:61,自引:0,他引:61  
Laccases occur widely in fungi; they have been characterized less frequently in higher plants. Here we have focused on more recent reports on the occurrence of laccase and its functions in physiological development and industrial utility. The reports of molecular weights, pH optima, and substrate specificity are extremely diverse. Conclusive proof of the occurrence of laccase in a tissue must demonstrate that the enzyme be able to oxidize quinol with concomitant uptake of oxygen. Laccase is involved in the pigmentation process of fungal spores, the regeneration of tobacco protoplasts, as fungal virulence factors, and in lignification of cell walls and delignification during white rot of wood. Commercially, laccases have been used to delignify woody tissues, produce ethanol, and to distinguish between morphine and codeine. A very wide variety of bioremediation processes employ laccase in order to protect the environment from damage caused by industrial effluents. Research in recent years has been intense, much of it elicited by the wide diversity of laccases, their utility and their very interesting enzymology.  相似文献   

13.
Manganese dependent peroxidase (MnP) is the main enzyme implicated in the biobleaching of kraft pulps by white rot fungi. The goal of this study was to evaluate the Mn requirement for biobleaching of eucalyptus oxygen delignified kraft pulp (OKP) by various white rot fungi: Trametes versicolor, Phanerochaete sordida, Phlebia radiata, Stereum hirsutum and Bjerkandera sp. strain BOS55. All of the strains tested produced MnP and provided extensive bleaching of OKP when 33 μM Mn was included in the medium. Bjerkandera sp. strain BOS55 was the only strain that also displayed MnP production and biobleaching activity of EDTA-extracted OKP in the complete absence of Mn. However, MnP and biobleaching activity in the absence of Mn was dependent on the presence of organic acids in the medium. The fact the biobleaching was correlated to MnP activity irrespective of whether Mn was present or absent suggests that there may be roles for MnP in Bjerkandera under Mn-deficient conditions. Although manganese-independent peroxidase (MIP) and lignin peroxidase (LiP) were also detected, the titres were much smaller in comparison with those of MnP, so their relative role in biobleaching can be predicted to have a minor importance in comparison with MnP. Only in the case of Bjerkandera, was the expression of LiP stimulated in the presence of oxalate but final brightness was not substantially affected.  相似文献   

14.
New polyoxometalate–laccase integrated system (PLIDS) employing polyoxometalate [SiW11VVO40]5− and laccase of Trametes versicolor for the continuous delignification of eucalypt kraft pulp has been developed. Pulp was delignified in a batch reactor containing catalytic amounts of [SiW11VVO40]5− at about 90 °C under atmospheric pressure. Re-oxidation of reduced polyoxometalate (POM) with laccase was carried out at 45 °C in a separate aerated bioreactor coupled with an ultrafiltration tubular ceramic membrane. This allowed the separation of laccase from re-oxidized POM, which was supplied in turn continuously to the delignification reactor.Proposed PLIDS allowed sustainable pulp delignification with minimal degradation of polysaccharides. The implementation of PLIDS, instead the fist chlorine dioxide stage (D) in conventional DEDED bleaching sequence, showed almost 60% of chlorine dioxide savings with strength properties of the bleached pulp (90% ISO) similar to those obtained after the conventional bleaching.  相似文献   

15.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624. When the kraft pulp was treated with partially purified MnP in the presence of MnSO4, Tween 80, and sodium malonate with continuous addition of H2O2 at 37°C for 24 h, the pulp brightness increased by about 10 points and the kappa number decreased by about 6 points compared with untreated pulp. The pulp brightness was also increased by 43 points to 75.5% by multiple (six) treatments with MnP combined with alkaline extraction. Our results indicate that in vitro degradation of residual lignin in hardwood kraft pulp with MnP is possible.  相似文献   

16.
Summary Bleaching of hardwood kraft pulp by Trametes versicolor was accompanied by release and accumulation of methanol, which was produced by demethylation of the pulp. A partial demethylation of the pulp was observed with isolated laccase I from T. versicolor. The extent of demethylation by laccase was increased to the level released by the fungus by addition of 2,2-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Methanol release by the laccase/ABTS combination was followed by slower kappa reduction. Both methanol release and kappa reduction were dependent on laccase and ABTS concentrations. The fungus did not produce a stable equivalent of ABTS during bleaching, because extracellular culture fluid from bleaching cultures gave only the same methanol release from pulp as laccase I. Pulp viscosity, an indicator of cellulose chain length, was decreased only slightly by laccase. Thus the enzyme in the presence of ABTS, unlike the fungus, specifically attacks lignin.Offprint requests to: R. Bourbonnais  相似文献   

17.
Biological bleaching of chemical pulps   总被引:8,自引:0,他引:8  
Use of biotechnology in pulp bleaching has attracted considerable attention and achieved interesting results in recent years. Enzymes of the hemicellulolytic type, particularly xylan-attacking enzymes, xylanases are now used commercially in the mills for pulp treatment and subsequent incorporation into bleach sequences. The aims of the enzymatic treatment depend on the actual mill conditions and may be related to environmental demands, reduction of chemical costs or maintenance or even improvement of product quality. The use of oxidative enzymes from white-rot fungi, that can directly attack lignin, is a second-generation approach, which could produce larger chemical savings than xylanase but has not yet been developed to the full scale. It is being studied in several laboratories in Canada, Japan, the U.S.A. and Europe. Certain white-rot fungi can delignify kraft pulps increasing their brightness and their responsiveness to brightening with chemicals. The fungal treatments are too slow but the enzyme manganese peroxidase and laccase can also delignify pulps and enzymatic processes are likely to be easier to optimize and apply than the fungal treatments. Development work on laccase and manganese peroxidase continues. This article presents an overview of developments in the application of hemicellulase enzymes, lignin-oxidizing enzymes and white-rot fungi in bleaching of chemical pulps. The basic enzymology involved and the present knowledge of the mechanisms of the action of enzymes as well as the practical results and advantages obtained on the laboratory and industrial scale are discussed.  相似文献   

18.
A recently isolated basidiomycete, Trametes sp. strain AH28-2, can be induced to produce a high level of laccases when grown on a cellobiose-asparagine liquid medium. After induction by kraft lignin, two major isozymes were detected in the fermentation supernatant of the fungus. The principal component laccase A, which accounts for about 85% of the total activity, can be purified to electrophoretic homogeneity by three chromatographic steps: DEAE-Sepharose FF, Superdex-200 and Mono-Q. The solution containing purified laccase is blue in color, and the ratio of absorbance at 280 nm to that at 600 nm is 22. The molecular mass of laccase A is estimated to be 62 kDa by SDS-PAGE, 57 kDa by FPLC, and measured as 58522 Da by MALDI mass spectrum. Laccase A is a monomeric glycoprotein with a carbohydrate content of 11-12% and an isoelectric point of 4.2. The optimum pH and temperature for oxidizing guaiacol are 4.5 and 50 degrees C, respectively. The half-life of the enzyme at 75 degrees C is 27 min. The enzyme shows a good stability from pH 4.2 to pH 8.0. The K(m) values of the enzyme toward substrates 2,2'-azino-bis (3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol and 2,6-dimethoxyphenol are 25, 420 and 25.5 microM, respectively, and the corresponding V(max) values are 670, 66.8, and 79 microM min(-1) x mg(-1), respectively. Laccase A activity is strongly inhibited by 0.1 mM NaN(3) or 0.1 mM cyanide. Two units of laccase A alone is able to completely oxidize 100 micromol 2,6-chlorophenol in 6 h. In the presence of 1 mM ABTS and 1-hydroxybenzotriazole, 15.0 U laccase A is able to oxidize 45% and 70% of 50 micromol fluorene in 12 and 18 h, respectively. The laccase A gene was cloned by a PCR method, and preliminary analysis of its sequence indicates 87.0% similarity to the corresponding segment in the phenoloxidase gene from Coriolus hirsutus.  相似文献   

19.
Several effluents from laccase-mediator treatments of kraft pulp were recovered and subsequently reused with fresh pulp in order to simulate recirculation of effluents during biobleaching. The effluents were used as a new bleaching stage without any modification except enzyme addition. Pulp treated with effluents were afterwards chemically bleached by using the simple sequence LQPo, where L represents the treatment with effluent and laccase addition, Q is a chelating stage and Po is an alkaline peroxide stage. This system showed a promising potential on delignification, with kappa number ranging from 5.5 to 6.6 after LQPo sequence, depending on the type of effluent employed in L stage. Improvements on pulp brightness were also reported compared with control experiment.  相似文献   

20.
In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号