首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
内陆淡水水体是大气中N2O的重要排放源,然而目前对于内陆典型城市水体N2O排放通量的监测数据依然匮乏,典型城市水体的N2O排放特征及驱动因素尚不清楚。本研究选取了南京市江北新区的典型水体,包括湖库、河流、养殖池塘和景观池塘,在2020年5月-2021年4月利用漂浮箱法连续监测了不同水体类型的水-气界面N2O排放特征,并通过测定水环境特征,探究驱动水体N2O排放通量的关键因素。研究结果表明,典型城市水体整体均表现为N2O排放源,河流和养殖池塘的日平均排放通量最大,分别为(503±1236)μg m-2 d-1和(508±797)μg m-2 d-1,其次为景观池塘((179±989)μg m-2 d-1),而湖库的N2O排放通量最小,仅表现为微弱的N2O排放源((54±212)μg m-2 d-1)。水体的N2O排放呈现季节性差异,河流和养殖池塘夏季的N2O排放通量显著高于其他季节(P<0.01)。水体全年N2O排放数据与水体温度和溶解氧含量(DO)呈显著相关。而在温度较高的5月份-9月份(>20℃),氮输入成为影响N2O排放通量的关键因素(P<0.01),因此控制城市水体的氮输入尤其是在水温较高的夏季是减少N2O排放的有利措施。此外,由于水文化学条件差异等因素,小型封闭水体包括养殖池塘和景观池塘的N2O排放通量差异较大,未来应加强监测不同水体的水文化学特征和N2O的时空排放特征,探讨影响小型封闭水体水-气界面N2O排放通量的具体驱动因素。此研究为城市区域N2O排放的精准核算提供了数据支撑,为N2O排放模型的修正提供了科学依据。  相似文献   

2.
城市小型景观水体CO2与CH4排放特征及影响因素   总被引:1,自引:0,他引:1  
淡水生态系统被认为是大气温室气体排放的重要来源,尤其在人类活动影响下,其排放强度可能进一步增强。城市小型景观水体是城市生态系统的重要组成,具有面积小、数量大以及人类干扰强的特征,其温室气体排放特征及影响因素尚不清楚。选择重庆市大学城8个景观水体和周边2个自然水体为对象,于2019年1、4、7、10月,利用漂浮箱和顶空法分析了水体CO2与CH4的溶存浓度及排放通量,旨在揭示城市小型景观水体CO2与CH4排放强度、时空变异特征以及影响因素。结果表明,10个小型水体CO2、CH4的溶存浓度范围分别为10.75-116.25 μmol/L和0.09-3.61 μmol/L(均值分别为(47.6±29.3)μmol/L、(1.13±0.56)μmol/L),均为过饱和状态;漂浮箱法实测的8个景观水体CO2和CH4排放通量均值分别为(72.7±65.9)mmol m-2 d-1和(2.31±3.48)mmol m-2 d-1(顶空法估算值为(69.7±82.0)mmol m-2 d-1和(3.69±2.92)mmol m-2 d-1),是2个自然水体的3.5-6.1和2.0-4.5倍,呈较强的CO2、CH4排放源;居民区景观水体CO2和CH4排放略高于校园区,均显著高于对照的自然水体;CO2排放夏季最高,秋季次之,冬、春季最低,CH4呈夏季>秋季≈春季>冬季的季节模式,温度和水体初级生产共同影响CO2和CH4排放的季节模式;水生植物分布对景观水体CO2、CH4排放有显著影响,有植物分布的水域比无植物水域平均高1.97和2.94倍;漂浮箱法和顶空法测得气体通量线性关系较好,但顶空法测得CO2通量在春季明显偏低,而CH4则普遍偏高。相关分析表明,景观水体碳、氮浓度、pH值以及DO等对CO2排放具有较好的指示性,CH4排放通量主要与水体中碳、磷浓度有关。城市小型景观水体CO2、CH4排放通量远高于大部分已有自然水体的研究结果,呈一种较强的大气温室气体排放源,在区域淡水系统温室气体排放清单中具有重要贡献,未来研究中应给以更多关注。  相似文献   

3.
黄河上游灌区稻田N2O排放特征   总被引:4,自引:0,他引:4  
黄河上游灌区稻田高产区过量施肥现象十分突出,氮肥过量施用引起土壤氮素盈余,导致N2O排放量增大,由此引起的温室效应引起广泛关注。采用静态箱-气相色谱法研究黄河上游灌区稻田不同施肥处理下N2O排放特征。试验设置5个施肥处理,包括常规氮肥300 kg/hm2下单施尿素和有机肥配施2个处理,分别用N300和N300-OM代表;优化氮肥240 kg/hm2下单施尿素和有机肥配施2个处理,分别用N240和N240-OM代表;对照不施氮肥用N0代表。试验结果得出,灌区水稻生长季稻田土壤N2O排放主要集中在水稻分蘖前及水稻生长的中后期,稻田氮肥施用、灌水及土壤温度的变化对N2O排放通量影响较大,不同处理水稻各生育阶段N2O累积排放量与稻田土壤耕层NO-3-N含量动态变化显著相关。稻田N2O排放不是黄河上游灌区稻田氮素损失的主要途径,但灌区稻田N2O排放的增温潜势较大;稻田氮肥过量施用会显著增加N2O排放量,在相同氮素水平下,有机肥配施会显著增加稻田土壤N2O的排放量(P<0.01)。优化施氮能有效减少灌区稻田水稻生长季N2O排放量。稻田不同处理的水稻整个生长季土壤N2O排放总量为2.69-3.87 kg/hm2,肥料氮通过N2O排放损失的百分率仅为0.43%-0.64%。在灌区习惯灌水和高氮肥300 kg/hm2时,N300-OM处理的稻田N2O排放量达3.87 kg/hm2,在100 a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO2/hm2;优化施氮240 kg/hm2水平下,N240和N240-OM处理的N2O累计排放量较N300-OM处理,分别降低了1.18 kg/hm2和0.57 kg/hm2,在100 a尺度上每年由稻田N2O排放引起的GWPs分别降低了6.33×107 kg CO2/hm2和3.06×107 kg CO2/hm2。  相似文献   

4.
范峰华  郑荣波  刘爽  郭雪莲 《生态学报》2021,41(16):6525-6532
近年来,二氧化钛纳米颗粒(TiO2NPs)环境释放量不断增加,并通过多种途径进入湿地生态系统,不可避免地影响到湿地生态系统环境和功能。然而,关于TiO2NPs对沼泽土壤反硝化作用和氧化亚氮(N2O)排放的影响机及制尚不明确。选择典型沼泽土壤,通过室内培养实验研究土壤理化性质、反硝化酶活性、反硝化速率(DNR)和N2O排放对不同剂量TiO2NPs 0 mg/kg (CK)、10 mg/kg (A10)、100 mg/kg (A100)、1000 mg/kg (A1000)输入的响应,探讨TiO2NPs输入对沼泽土壤反硝化作用和N2O排放影响的内在机制。结果表明:不同剂量TiO2NPs处理显著降低了土壤pH (P<0.05),A10处理显著降低土壤总有机碳(TOC)含量(P<0.01),A1000处理显著降低硝态氮(NO3--N)和亚硝态氮(NO2--N)含量(P<0.05)。TiO2NPs处理抑制硝酸盐还原酶(NAR)活性,促进一氧化氮还原酶(NOR)和氧化亚氮还原酶(NOS)活性(P<0.01),A1000处理先促进后抑制了亚硝酸盐还原酶(NIR)活性(P<0.05)。不同剂量TiO2NPs处理抑制了土壤DNR,促进了N2O排放,TiO2NPs处理通过抑制NIR活性,降低土壤DNR,同时通过促进NOR活性,提高N2O排放。综上,TiO2NPs输入通过影响反硝化还原酶活性改变沼泽土壤反硝化过程,导致沼泽土壤N2O排放增加,改变湿地氮的源、汇功能,影响全球气候变化。为TiO2NPs输入的湿地环境风险评估研究提供理论基础。  相似文献   

5.
邓欧平  唐祺超  叶丽  邓良基 《生态学报》2021,41(23):9305-9314
氧化亚氮(N2O)是一种潜在的、强大的温室气体,应该根据京都议定书规定开展监测和削减。河流、水库、鱼塘和沟渠等受人类影响的小流域水生生态系统是氮素生物地球化学循环的活跃区域,更是N2O重要的源和汇。然而,同一流域不同水体N2O的排放特征差异及其驱动因素尚不清楚。因此,选择川西平原西河流域作为研究区,于2016年6月到2017年5月连续监测不同水体水气界面的N2O排放强度,并结合聚类分析解析N2O排放特征的驱动因素。结果显示,不同水体的N2O年排放通量差异显著,沟渠的N2O年排放通量最高((52.68±36.09)μg m-2 h-1),城市段河流和鱼塘次之((34.16±23.97)μg m-2 h-1和(29.03±31.41)μg m-2 h-1),乡镇段和农区段河流再次((8.32±28.60)μg m-2 h-1和(8.52±9.43)μg m-2 h-1),水库最低((-16.45±29.76)μg m-2 h-1)。除水库表现为N2O的汇,其他水体均表现为N2O的排放源。另外,不同水体N2O排放的季节特征差异显著,农区段河流和农业沟渠表现为夏天最高,冬春最低(P<0.05),而其他水体均表现为冬春显著高于夏秋(P<0.05)。根据N2O排放季节特征及其驱动因素可将西河流域水体分为四类:第一类农业类水体的N2O排放季节特征受气象因素和农业活动的联合驱动;第二类城乡类河流和第三类鱼塘分别受控于人类活动和养殖活动,与降雨温度等气象指标关系较弱;第四类水库主要受控于气象因素。并且,第一类农业类水体已成为大气N2O排放的重要源,农业氮素管控是区域控制N2O排放的重点。  相似文献   

6.
双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响   总被引:4,自引:0,他引:4  
研究双季稻收获后填闲种植不同冬季作物在其生长季节内CH4和N2O的排放特征,对合理利用冬闲稻田,发展冬季作物生产及合理评价不同种植模式具有重要意义。采用静态箱-气相色谱法对冬季免耕直播黑麦草、紫云英、油菜以及翻耕移栽油菜和冬闲的双季稻田中甲烷(CH4)和氧化亚氮(N2O)排放进行了分析。结果表明:在冬季作物生长期,CH4、N2O平均排放通量和总排放量均表现为翻耕移栽油菜>免耕直播黑麦草>免耕直播油菜>免耕直播紫云英>冬闲。不同冬季作物稻田CH4和N2O总排放量与对照(冬闲)的差异均达到极显著水平(P<0.01);翻耕移栽油菜的双季稻田中CH4和N2O排放量最高,分别达2.989 g/m2和0.719 g/m2。翻耕移栽油菜稻田的CH4和N2O温室效应总和也最大,为2893.92 kg CO2/hm2;免耕直播黑麦草和免耕直播油菜处理次之,而免耕直播紫云英处理最低。种植不同冬季作物促进了稻田生态系统CH4和N2O的排放。  相似文献   

7.
为了更好理解若尔盖高原不同微生境下沼泽湿地生态系统CO2排放通量的变化特征,以若尔盖高原湿地自然保护区为研究对象,2013和2014年生长季期间,采用了静态箱和快速温室气体法原位观测了3种湿地5种微生境下沼泽湿地CO2排放通量时空变化规律。结果表明:长期淹水微地貌草丘区湿地(PHK)和洼地区湿地(PHW) CO2排放通量变化范围分别为38.99-1731.74 mg m-2 h-1和46.69-335.22 mg m-2 h-1,季节性淹水区微地貌草丘区湿地(SHK)和洼地区湿地(SHW) CO2排放通量变化范围分别为193.90-2575.60 mg m-2 h-1和49.93-1467.45 mg m-2 h-1,而两者过渡区的无淹水区沼泽湿地(Lawn) CO2排放通量变化范围194.20-898.75 mg m-2 h-1。相关性分析表明5种微地貌区沼泽湿地CO2排放通量季节性变化与不同深度土壤温度均存在显著正相关,与水位存在显著负相关(PHW、SHW、SHK、Lawn)或不相关(PHK),并且水位和温度(5 cm)共同解释了CO2排放通量季节性变化的87%。3种湿地5种微生境下沼泽湿地CO2排放通量存在空间变化规律,主要受水位影响,但植物也影响沼泽湿地CO2排放通量空间变化规律,并且表明沼泽湿地CO2排放通量与水位平均值存在显著负相关。  相似文献   

8.
梁东哲  赵雨森  曹杰  辛颖 《生态学报》2019,39(21):7950-7959
为研究大兴安岭重度火烧迹地在不同恢复方式下林地土壤CO2、CH4和N2O排放特征及其影响因素,采用静态箱/气相色谱法,在2017年生长季(6月-9月)对3种恢复方式(人工更新、天然更新和人工促进天然更新)林地土壤温室气体CO2、CH4、N2O通量进行了原位观测。研究结果表明:(1)3种恢复方式林地土壤在生长季均为大气CO2、N2O的源,CH4的汇;生长季林地土壤CO2排放通量大小关系为人工促进天然更新((634.40±246.52)mg m-2 h-1) > 人工更新((603.63±213.22)mg m-2 h-1) > 天然更新((575.81±244.12)mg m-2 h-1),3种恢复方式间无显著差异;人工更新林地土壤CH4吸收通量显著高于人工促进天然更新;天然更新林地土壤N2O排放通量显著高于其他两种恢复方式。(2)土壤温度是影响3种恢复方式林地土壤温室气体通量的关键因素;土壤水分仅对人工更新林地土壤N2O通量有极显著影响(P < 0.01);3种恢复方式林地土壤CO2通量与大气湿度具有极显著的响应(P < 0.01);土壤pH仅与天然更新林地土壤CO2通量显著相关(P < 0.05);土壤全氮含量仅与人工促进天然更新林地土壤CH4通量显著相关(P < 0.05)。(3)基于100年尺度,由3种温室气体计算全球增温潜势得出,人工促进天然更新(1.83×104 kg CO2/hm2) > 人工更新(1.74×104 kg CO2/hm2) > 天然更新(1.67×104 kg CO2/hm2)。(4)阿木尔地区林地土壤年生长季CO2和N2O排放量为8.85×106 t和1.88×102 t,CH4吸收量为1.05×103 t。  相似文献   

9.
以豫西旱地玉米农田为研究对象,设置不同生物炭施用量处理(T0:不施用生物炭;T1:施用生物炭20 t/hm2;T2:施用生物炭40 t/hm2),采用密闭式静态箱法测定N2O排放通量和荧光定量PCR法分析丛枝菌根(arbuscular mycorrhizal,AM)真菌、氨单加氧酶(amoA)、亚硝酸盐还原酶(nirSnirK)以及氧化亚氮还原酶(nosZ)的基因丰度,同时测定土壤理化性状的变化。研究结果表明,随着生物炭施用量的增加,土壤pH和含水量呈增加趋势,土壤有机碳、全氮和铵态氮含量显著提高,土壤容重和硝态氮含量显著降低。T1和T2处理土壤有机碳含量分别较T0显著提高38.44%和71.01%;T1和T2处理土壤铵态氮含量分别较T0显著增加15.89%和30.46%;T2处理土壤全氮含量较T0处理显著提高14.87%;T1和T2处理土壤硝态氮含量分别较T0减少10.57%和21.40%。随着生物炭施用量的增加,AM真菌侵染率显著增加,T1和T2处理分别较T0处理提高71.88%和115.88%;AOA、AOB、nirKnirS基因丰度显著降低;nosZ基因丰度增加。施加生物炭处理的N2O排放通量和累积排放量均低于不施生物炭处理,具体表现为:T0 > T1 > T2。相关分析表明,生物炭施用量与AM真菌基因丰度呈显著正相关;与nosZ基因丰度呈正相关;与AOA、AOB、nirKnirS基因丰度呈极显著负相关。N2O排放通量与AOA、nirKnirS基因丰度呈极显著正相关;与土壤含水量和土壤硝态氮含量呈显著正相关;与AM真菌、nosZ基因丰度、易提取球囊霉素含量、铵态氮含量呈极显著负相关。集成推进树(ABT)分析表明,AOA对N2O排放的影响最大,其次是AM真菌和nirS。总之,生物炭处理改善土壤理化性质、提高土壤AM真菌侵染率、调节硝化、反硝化相关功能基因的丰度,减少N2O气体排放,为旱地农田合理施用生物炭减少N2O气体排放提供理论依据。  相似文献   

10.
康希睿  张涵丹  王小明  陈光才 《生态学报》2020,40(19):6958-6968
森林群落在净化空气、截留沉降污染物、改善地表水质等方面具有重要作用。本研究以北亚热带地区3种典型森林群落(毛竹林、杉木林、青冈阔叶林)为研究对象,通过分析沉降污染物(NH4+-N、NO3--N、NO2--N、TP和SO42-)在大气降水、林内穿透雨、树干茎流、枯透水和地表径流中的浓度和通量变化特征,探讨不同森林群落对氮、磷、硫的截留净化作用和分配特征。结果表明,该区域大气降水中NH4+-N、NO3--N、NO2--N、TP和SO42-年均浓度分别为1.06、0.61、0.04、0.07、1.84 mg/L,其年均pH为5.88;各森林群落林冠层能够调升降雨的pH且全年稳定,对TP和NH4+-N均有吸附作用,截留率分别为79.09%-84.68%和30.88%-69.36%;而枯落物层则是林下氮、磷、硫的主要释放源,对NH4+-N、NO3--N、TP和SO42-均具有淋溶作用;此外,由地表径流(输出)与大气降水(输入)的对比分析可知,各林地对沉降污染物中氮、磷、硫的截留率均超过98%;3种森林群落对沉降污染物中氮、磷、硫的截留能力依次为:青冈阔叶林 > 毛竹林 > 杉木林,阔叶林对沉降污染物的净化能力要高于毛竹林及针叶的杉木林。  相似文献   

11.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

12.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:5,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

13.
施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响   总被引:6,自引:0,他引:6  
刘杏认  张星  张晴雯  李贵春  张庆忠 《生态学报》2017,37(20):6700-6711
以华北农田冬小麦-夏玉米轮作体系连续6a施用生物炭和秸秆还田的土壤为研究对象,于2013年10月—2014年9月,采用静态暗箱-气相色谱法,对CO_2、N_2O通量进行了整个轮作周期的连续观测,探究施用生物炭与秸秆还田对其排放通量的影响。试验共设4个处理:CK(对照)、C1(低量生物炭4.5 t hm~(-2)a~(-1))、C2(高量生物炭9.0 t hm~(-2)a~(-1))和SR(秸秆还田straw return)。结果表明:在整个轮作周期内,各处理CO_2、N_2O通量随时间的变化趋势基本一致。随着生物炭施用量的增加,CO_2排放通量分别增加了0.3%—90.3%(C1)、1.0%—334.2%(C2)和0.4%—156.3%(SR)。其中,C2处理对CO_2累积排放量影响最大,增幅为42.9%。对N_2O而言,C2处理显著降低了N_2O累积排放量,但增加了CO_2和N_2O排放的综合增温潜势,C1和SR处理对N_2O累积排放量及综合增温潜势均没有显著影响。相关分析表明,土壤温度和土壤含水量是影响CO_2通量最主要的因素,两者之间呈极显著的正相关关系;N_2O通量与土壤温度、土壤含水量、NO_3~--N和NH_4~+-N均表现出极显著的正相关关系,而与土壤p H值表现出极显著的负相关关系。由此可见,添加生物炭对于减少氮素的气体损失具有较大的潜力。  相似文献   

14.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

15.
The objectives of this study were (1) to determine the effect of land use on N2O emissions from Inner Mongolian semi-arid grasslands of China and (2) to evaluate the process-based DNDC model to extrapolate our field measurements from a limited number of sites to a larger temporal and spatial scale. The results suggest the following. Rainfall event was the dominant controlling factor for the seasonal variations of the N2O fluxes. The seven selected sites exhibited a similar seasonal trend in N2O emission, despite their different vegetation, land use and textures. In the typical steppe, N2O fluxes generally decrease with decreasing soil organic C (SOC) and total N content, indicating that soil C and N pools are very important in determining the spatial magnitude of the N2O flux. N2O emissions were very small during the entire growing season, averaging only 0.76 g N2O-N ha–1 day–1 for the five typical steppe sites, 0.35 g N2O-N ha–1 day–1 for the mown meadow steppe site, and 0.83 g N2O-N ha–1 day–1 from the cropped meadow steppe site. No enhanced effect due to overgrazing was observed for the N2O emission from the semi-arid grasslands. This was mainly results from the decreased SOC content due to overgrazing, which may have reduced the promoting effect of increased soil bulk density by trampling and animal excreta. Except for the mown steppe site, the model predictions of the N2O flux for the six different sites agree well with the observed values (r 2 ranging from 0.35 to 0.68). It would be concluded that the DNDC model captured the key driving process for N2O emission. Nitrification was the predominant process, contributing 64–88% to the N2O emission. However, in terms of the magnitude of the N2O emission, further modifications should focus on the underestimated N2O flux during the spring and autumn periods (nitrification, freeze/thaw cycles) and the effect of topography and the mowing on N2O emission.  相似文献   

16.
The loss of nitrogen (N) from field-applied animal manure through ammonia (NH3) volatilisation and nitrous oxide (N2O) emission is of major environmental concern. Both lime and dicyandiamide (DCD) have been suggested as amendments that can mitigate N2O emissions, but simultaneously increase the risk of NH3 volatilisation. This study evaluated the impact of lime and DCD on NH3 and N2O emissions following application of liquid hog manure. Hydrated lime (Ca(OH)2) was added to an acidic soil to achieve three pH levels (4.7, 6.3 and 7.4). Soil samples (100 g) were then placed in 500 ml screw-top Mason-jars and de-ionised water was added to bring the samples to 50, 70 and 90% water-filled pore space (WFPS). Slurry was applied at a rate equivalent to 116,000 l ha−1, while DCD was applied at 30% of the NH4-N rate applied. Jars were sealed and incubated at 21°C for 21 d. Ammonia volatilisation was quantified using boric acid traps, while N2O gas concentration was analysed using gas chromatography. Dicyandiamide had no effect (P>0.05) on either NH3 or N2O emissions. Both NH3 and N2O emissions increased (P<0.05) as WFPS increased, with emissions ranging from 0.9 to 1.4 kg NH3-N ha−1 and 123 to 353 g N2O-N ha−1, respectively. Liming decreased (P<0.01) N2O emissions from 547 to 46 g N2O-N ha−1, but increased (p<0.01) NH3 volatilisation from 0.36 to 1.92 kg NH3-N ha−1. Results suggest that liming to a pH ≥6.3 can reduce N2O emissions, however, this reduction will be accompanied by a substantial loss of NH3. Section Editor: H. Lambers  相似文献   

17.
To date, few studies are conducted to quantify the effects of reduced ammonium (NH4 +) and oxidized nitrate (NO3 ) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha−1 yr−1. Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0–20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4 +-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3 -N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4 +-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3 -N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.  相似文献   

18.
水肥一体化条件下设施菜地的N2O排放   总被引:5,自引:0,他引:5  
王艳丽  李虎  孙媛  王立刚 《生态学报》2016,36(7):2005-2014
在保证作物产量的前提下,研究减少农田土壤N_2O排放的水肥统筹管理措施对全球温室气体减排具有重要意义。以京郊典型设施菜地为例,设置了农民习惯(FP)、水肥一体化(FPD)、优化水肥一体化(OPTD)和对照(CK)4个处理,采用静态箱-气相色谱法,对果菜-叶菜(黄瓜-芹菜)轮作周期内土壤N_2O排放进行了观测,并分析了氮肥施用量、灌溉方式、土壤温度和湿度等因素对土壤N_2O排放的影响。结果表明:在黄瓜-芹菜种植模式中,各施氮处理除基肥施用后N_2O排放峰持续10—15d外,一般施肥、施肥+灌溉事件后土壤N_2O排放峰均呈现3—5d短而急促的情形。黄瓜生长季N_2O排放通量与土壤湿度(WFPS)之间呈现显著相关的关系;芹菜生长季N_2O排放通量与土壤温度之间呈现显著相关的关系。观测期内FP处理N_2O排放量为(31.00±2.15)kg N/hm~2,FPD处理与之相比N_2O排放量减少了4.2%,而OPTD处理在减少40%化肥氮量的情况下,N_2O累积排放量比FP处理减少了42.7%,且达到显著水平。说明在水肥一体化条件下,合理改变施肥体系是减少N_2O排放的前提,在此基础上进行水肥优化是设施菜地保持产量、减少N_2O排放的重要技术措施。  相似文献   

19.
京郊典型设施蔬菜地土壤N_2O排放特征   总被引:10,自引:0,他引:10  
张婧  李虎  王立刚  邱建军 《生态学报》2014,34(14):4088-4098
利用静态暗箱-气相色谱法对北京郊区设施蔬菜地典型种植模式(番茄-白菜-生菜)下土壤N2O排放特征进行了周年(2012年2月22日—2013年2月23日)观测,探讨了不同处理下(即不施氮肥处理(CK)、农民习惯施肥处理(FP)、减氮优化施肥处理(OPT)和减氮优化施肥+硝化抑制剂处理(OPT+DCD))N2O排放特征及土壤温度、土壤湿度、土壤无机氮含量对土壤N2O排放的影响。结果表明:每次施肥+灌溉之后设施蔬菜地会出现明显的N2O排放高峰,持续时间一般为3—5 d。不同处理N2O排放通量变化范围在-0.21—14.26 mg N2O m-2h-1,平均排放通量0.03—0.36 mg N2O m-2h-1。整个蔬菜生长季各处理N2O排放与土壤孔隙含水率(WFPS)均表现出极显著的正相关关系(P0.01);不施氮处理5 cm深度土壤温度与N2O排放通量呈现显著的正相关关系(P0.05);各处理N2O排放与土壤表层硝态氮含量具有较一致变化趋势。不同处理下N2O年度排放总量差异显著,依次顺序为FP((20.66±0.91)kg N/hm2)OPT((12.79±1.33)kg N/hm2)OPT+DCD((8.03±0.37)kg N/hm2)。与FP处理相比,OPT处理和OPT+DCD处理N2O年排放总量分别减少了38.09%和61.13%。各处理N2O排放系数介于0.36%—0.77%,低于IPCC 1.0%的推荐值。在目前的管理措施下,合理减少施氮量和添加硝化抑制剂是减少设施蔬菜地N2O排放量的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号