首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
高明磊  满秀玲  段北星 《生态学报》2021,41(24):9886-9897
为进一步探究林下植被和凋落物管理对我国寒温带森林生长季土壤CH4通量的影响,采用静态箱-气相色谱法对大兴安岭北部4种林型(白桦林、山杨林、樟子松林和兴安落叶松林)4种处理(自然状态、去除凋落物、去除林下植被以及去除林下植被和凋落物)的土壤CH4通量排放特征进行观测研究。结果表明:该地区森林生长季土壤均表现为CH4的汇,4种林型不同处理后土壤CH4通量表现为单峰变化趋势,吸收峰值出现在7月或8月。自然状态4种林型土壤CH4平均吸收通量表现为白桦林(-79.23±14.92)μg m-2 h-1>山杨林(-64.27±9.60)μg m-2 h-1>樟子松林(-62.54±15.48)μg m-2 h-1>兴安落叶松林(-48.73±12.26)μg m-2 h-1,兴安落叶松土壤CH4平均吸收通量显著小于其他三种林型(P<0.05)。相比于自然状态,4种林型在去除凋落物后土壤CH4吸收通量提高了2.12%-12.15%,但变化幅度均没有达到显著水平(P>0.05)。去除林下植被后4种林型CH4吸收通量提高了0.84%-20.55%,且只有山杨林吸收增加达到显著水平(P<0.05)。同时去除林下植被和凋落物后,对白桦林和樟子松土壤CH4通量影响不显著(P>0.05),但对山杨林和兴安落叶松林影响显著(P<0.05)。总之,去除凋落物或林下植被均会提高土壤对CH4吸收,去除林下植被对土壤CH4通量的影响要大于去除凋落物的影响,但不同林型不同处理之间还存在差异。  相似文献   

2.
邓欧平  唐祺超  叶丽  邓良基 《生态学报》2021,41(23):9305-9314
氧化亚氮(N2O)是一种潜在的、强大的温室气体,应该根据京都议定书规定开展监测和削减。河流、水库、鱼塘和沟渠等受人类影响的小流域水生生态系统是氮素生物地球化学循环的活跃区域,更是N2O重要的源和汇。然而,同一流域不同水体N2O的排放特征差异及其驱动因素尚不清楚。因此,选择川西平原西河流域作为研究区,于2016年6月到2017年5月连续监测不同水体水气界面的N2O排放强度,并结合聚类分析解析N2O排放特征的驱动因素。结果显示,不同水体的N2O年排放通量差异显著,沟渠的N2O年排放通量最高((52.68±36.09)μg m-2 h-1),城市段河流和鱼塘次之((34.16±23.97)μg m-2 h-1和(29.03±31.41)μg m-2 h-1),乡镇段和农区段河流再次((8.32±28.60)μg m-2 h-1和(8.52±9.43)μg m-2 h-1),水库最低((-16.45±29.76)μg m-2 h-1)。除水库表现为N2O的汇,其他水体均表现为N2O的排放源。另外,不同水体N2O排放的季节特征差异显著,农区段河流和农业沟渠表现为夏天最高,冬春最低(P<0.05),而其他水体均表现为冬春显著高于夏秋(P<0.05)。根据N2O排放季节特征及其驱动因素可将西河流域水体分为四类:第一类农业类水体的N2O排放季节特征受气象因素和农业活动的联合驱动;第二类城乡类河流和第三类鱼塘分别受控于人类活动和养殖活动,与降雨温度等气象指标关系较弱;第四类水库主要受控于气象因素。并且,第一类农业类水体已成为大气N2O排放的重要源,农业氮素管控是区域控制N2O排放的重点。  相似文献   

3.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

4.
内陆淡水水体是大气中N2O的重要排放源,然而目前对于内陆典型城市水体N2O排放通量的监测数据依然匮乏,典型城市水体的N2O排放特征及驱动因素尚不清楚。本研究选取了南京市江北新区的典型水体,包括湖库、河流、养殖池塘和景观池塘,在2020年5月-2021年4月利用漂浮箱法连续监测了不同水体类型的水-气界面N2O排放特征,并通过测定水环境特征,探究驱动水体N2O排放通量的关键因素。研究结果表明,典型城市水体整体均表现为N2O排放源,河流和养殖池塘的日平均排放通量最大,分别为(503±1236)μg m-2 d-1和(508±797)μg m-2 d-1,其次为景观池塘((179±989)μg m-2 d-1),而湖库的N2O排放通量最小,仅表现为微弱的N2O排放源((54±212)μg m-2 d-1)。水体的N2O排放呈现季节性差异,河流和养殖池塘夏季的N2O排放通量显著高于其他季节(P<0.01)。水体全年N2O排放数据与水体温度和溶解氧含量(DO)呈显著相关。而在温度较高的5月份-9月份(>20℃),氮输入成为影响N2O排放通量的关键因素(P<0.01),因此控制城市水体的氮输入尤其是在水温较高的夏季是减少N2O排放的有利措施。此外,由于水文化学条件差异等因素,小型封闭水体包括养殖池塘和景观池塘的N2O排放通量差异较大,未来应加强监测不同水体的水文化学特征和N2O的时空排放特征,探讨影响小型封闭水体水-气界面N2O排放通量的具体驱动因素。此研究为城市区域N2O排放的精准核算提供了数据支撑,为N2O排放模型的修正提供了科学依据。  相似文献   

5.
左嫚  陈奇伯  黎建强  杨关吕  胡景  孙轲 《生态学报》2021,41(11):4552-4561
为研究枯落物输入变化对云南松(Pinus yunnanensis)林地CO2释放的影响。本研究于2018年3月至2020年2月,应用枯落物添加和去除实验(DIRT),设置对照(CK)、双倍枯落物(DL)、去除枯落物(NL)、去除有机层和A层(O/A-Less)、去除根系(NR)和无输入(NI)6个处理水平,采用Li-6400便携式光合作用测量仪及TRIME-PICO 64/32土壤温度水分测定仪对不同处理样地每月的CO2通量(Rs)、土壤温度和土壤水分(15cm)进行了测定。结果表明:(1)不同处理样地CO2通量均呈现出明显的月变化,7至8月最高,1至4月最低,平均值表现为Rs (DL)=8.10 μmol m-2 s-1 > Rs (CK)=6.27 μmol m-2 s-1 > Rs (NL)=5.44 μmol m-2 s-1 > Rs (NR)=4.46 μmol m-2 s-1 > Rs (O/A-Less)=3.86 μmol m-2 s-1 > Rs (NI)=2.94 μmol m-2 s-1。(2)与CK相比,DL样地CO2通量升高了29.12%,而去除地上枯落物和地下根系样地CO2通量显著降低,CO2通量平均变幅分别为α(NR)=-28.85%,α(NI)=-53.14%,α(O/A-Less)=-38.46%,α(NL)=-13.29%。(3)不同处理土壤水分和土壤温度均存在显著的月变化(P<0.01),NL和O/A-Less的土壤水分显著低于CK,而其余处理与CK间无显著差异(P>0.05);不同处理间土壤温度表现为NR和NI均显著高于CK,其余处理与CK间无显著差异(P>0.05)。(4)不同处理样地CO2通量与土壤温度呈显著指数相关(P<0.01),与土壤水分在NI和O/A-Less处理中无显著相关(P>0.05);与CK相比,NI、O/A-Less和NL处理的Q10增加,而NR和DL处理的Q10则降低;不同处理林地CO2通量与土壤水热因子双因素模型能更好的解释林地CO2通量的变化。本研究表明枯落物不同处理通过改变土壤碳输入和土壤环境因子从而影响生态系统碳排放,研究结果可为未来气候变化和人为干扰下云南松林的碳循环提供基础数据。  相似文献   

6.
林晓雪  黄佳芳  李慧  仝川 《生态学报》2022,42(22):9186-9198
河口感潮沼泽是全球重要的蓝碳生态系统,具有很强的固碳能力。碳收支研究是量化生态系统碳源/汇过程及固碳规模的基础。本研究运用透明箱和不同遮光率布遮盖+红外气体分析仪/气相色谱相结合的方法,模拟不同光照条件,测定闽江河口鳝鱼滩半咸水芦苇沼泽和短叶茳芏沼泽的瞬时净生态系统二氧化碳(CO2)交换量(net ecosystem exchange,NEE)、生态系统呼吸(ecosystem respiration,ER)以及甲烷(CH4)排放通量,并通过对总光合吸收量(gross ecosystem exchange,GEE)与光合有效辐射的拟合以及ER与气温的拟合,外推2个沼泽生态系统CO2气体在月、年尺度上的NEE和ER,评估其年固碳量。2个沼泽生态系统的NEE和ER均具有明显的季节变化,春夏秋季为大气中CO2的汇,而冬季则转化为大气中CO2的源,芦苇沼泽年尺度固碳能力显著高于短叶茳芏沼泽。芦苇沼泽与短叶茳芏沼泽CH4排放通量差异不显著。综合考虑CH4排放,闽江河口鳝鱼滩半咸水芦苇沼泽、短叶茳芏沼泽生态系统年固碳量分别为(5371.52±336.97) g CO2-eq/m2和(2730.32±503.67) g CO2-eq/m2。研究表明:闽江河口半咸水沼泽湿地在年尺度上是一个较强的碳汇,在缓解全球变暖方面发挥着重要的角色。  相似文献   

7.
双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响   总被引:4,自引:0,他引:4  
研究双季稻收获后填闲种植不同冬季作物在其生长季节内CH4和N2O的排放特征,对合理利用冬闲稻田,发展冬季作物生产及合理评价不同种植模式具有重要意义。采用静态箱-气相色谱法对冬季免耕直播黑麦草、紫云英、油菜以及翻耕移栽油菜和冬闲的双季稻田中甲烷(CH4)和氧化亚氮(N2O)排放进行了分析。结果表明:在冬季作物生长期,CH4、N2O平均排放通量和总排放量均表现为翻耕移栽油菜>免耕直播黑麦草>免耕直播油菜>免耕直播紫云英>冬闲。不同冬季作物稻田CH4和N2O总排放量与对照(冬闲)的差异均达到极显著水平(P<0.01);翻耕移栽油菜的双季稻田中CH4和N2O排放量最高,分别达2.989 g/m2和0.719 g/m2。翻耕移栽油菜稻田的CH4和N2O温室效应总和也最大,为2893.92 kg CO2/hm2;免耕直播黑麦草和免耕直播油菜处理次之,而免耕直播紫云英处理最低。种植不同冬季作物促进了稻田生态系统CH4和N2O的排放。  相似文献   

8.
王怡萌  段磊磊  陈聪  王铭  王升忠  赵婧 《生态学报》2023,43(11):4583-4593
泥炭地水文条件影响泥炭地生物地球化学循环,控制和维持着泥炭地生态系统的结构和功能,是泥炭地生态恢复的重要前提。然而,目前关于恢复泥炭地土壤碳排放对不同水位的响应尚不明确。以长白山区天然(NP)、退耕(DP)及实施不同水文管理的恢复泥炭地(低水位(LR)、高水位(HR)与高低交替水位(H-LR))为研究对象,采用静态箱-气相色谱法对研究区泥炭地进行生长季(6-10月)土壤CO2、CH4排放监测。结果表明:温度和水位变化是研究区泥炭地土壤CO2、CH4排放季节变化的主控因子。H-LR受水位控制的影响,生长季土壤CO2排放速率波动剧烈,其它水位管理恢复区土壤CO2排放速率呈单峰型排放模式,且均与近地表温度呈指数相关(P<0.05)。除HR外,土壤CO2排放速率与水位呈显著负相关(P<0.05)。生长季,研究区HR土壤CH4排放速率呈双峰型,H-LR与NP的土壤CH4排放呈单峰型,与近地表温度呈指数相关(P<0.05),LR水位与CH4排放速率显著正相关(P<0.05)。研究区不同水位管理恢复泥炭地土壤碳排放差异显著,虽然HR的土壤CO2-C累积碳排放量显著低于其它水位恢复区,但其土壤CH4-C累积碳排放量和综合增温潜势显著高于其它水位恢复区(P<0.05)。LR的累积碳排放量显著低于退化泥炭地,且其综合增温潜势最低。因此,建议在泥炭地恢复初期将低水位管理作为短期策略,以更好地恢复泥炭地碳汇功能,减弱其增温潜势。  相似文献   

9.
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (P N). In greenhouse, Katy registered 28.3 μmol m−2 s−1 for compensation irradiance and 823 μmol m−2 s−1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures, P N of the field-grown Katy was 16.5 μmol m−2 s−1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater P N (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed better than Erhuacao under greenhouse conditions.  相似文献   

10.
为了更好理解若尔盖高原不同微生境下沼泽湿地生态系统CO2排放通量的变化特征,以若尔盖高原湿地自然保护区为研究对象,2013和2014年生长季期间,采用了静态箱和快速温室气体法原位观测了3种湿地5种微生境下沼泽湿地CO2排放通量时空变化规律。结果表明:长期淹水微地貌草丘区湿地(PHK)和洼地区湿地(PHW) CO2排放通量变化范围分别为38.99-1731.74 mg m-2 h-1和46.69-335.22 mg m-2 h-1,季节性淹水区微地貌草丘区湿地(SHK)和洼地区湿地(SHW) CO2排放通量变化范围分别为193.90-2575.60 mg m-2 h-1和49.93-1467.45 mg m-2 h-1,而两者过渡区的无淹水区沼泽湿地(Lawn) CO2排放通量变化范围194.20-898.75 mg m-2 h-1。相关性分析表明5种微地貌区沼泽湿地CO2排放通量季节性变化与不同深度土壤温度均存在显著正相关,与水位存在显著负相关(PHW、SHW、SHK、Lawn)或不相关(PHK),并且水位和温度(5 cm)共同解释了CO2排放通量季节性变化的87%。3种湿地5种微生境下沼泽湿地CO2排放通量存在空间变化规律,主要受水位影响,但植物也影响沼泽湿地CO2排放通量空间变化规律,并且表明沼泽湿地CO2排放通量与水位平均值存在显著负相关。  相似文献   

11.
CO2 and CH4 fluxes were monitored over 4 years in a range of taiga forests along the Tanana River in interior Alaska. Floodplain alder and white spruce sites and upland birch/aspen and white spruce sites were examined. Each site had control, fertilized, and sawdust amended plots; flux measurements began during the second treatment year. CO2 emissions decreased with successional age across the sites (alder, birch/aspen, and white spruce, in order of succession) regardless of landscape position. Although CO2 fluxes showed an exponential relationship with soil temperature, the response of CO2 production to moisture fit an asymptotic model. Of the manipulations, only N fertilization had an effect on CO2 flux, decreasing flux in the floodplain sites but increasing it in the birch/aspen site. Landscape position was the best predictor of CH4 flux. The two upland sites consumed CH4 at similar rates (approximately 0.5 mg C m−2 d−1), whereas the floodplain sites had lower consumption rates (0–0.3 mg C m−2 d−1). N fertilization and sawdust both inhibited CH4 consumption in the upland birch/aspen and floodplain spruce sites but not in the upland spruce site. The biological processes driving CO2 fluxes were sensitive to temperature, moisture, and vegetation, whereas CH4 fluxes were sensitive primarily to landscape position and biogeochemical disturbances. Hence, climate change effects on C-gas flux in taiga forest soils will depend on the relationship between soil temperature and moisture and the concomitant changes in soil nutrient pools and cycles. Received 10 March 1998; accepted 29 December 1999.  相似文献   

12.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   

13.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

14.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   

15.
Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta‐analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2O and CH4 effluxes were related to the changes in soil nitrate and soil aeration‐related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.  相似文献   

16.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

17.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

18.
Controls on the Carbon Balance of Tropical Peatlands   总被引:4,自引:0,他引:4  
The carbon balance of tropical peatlands was investigated using measurements of gaseous fluxes of carbon dioxide (CO2) and methane (CH4) at several land-use types, including nondrained forest (NDF), drained forest (DF), drained regenerating forest (DRF) after clear cutting and agricultural land (AL) in Central Kalimantan, Indonesia. Soil greenhouse gas fluxes depended on land-use, water level (WL), microtopography, temperature and vegetation physiology, among which WL was the strongest driver. All sites were CH4 sources on an annual basis and the emissions were higher in sites providing fresh litter deposition and water logged conditions. Soil CO2 flux increased exponentially with soil temperature (T s) even within an amplitude of 4–5°C. In the NDF soil CO2 flux sharply decreased when WLs rose above −0.2 and 0.1 m for hollows and hummocks, respectively. The sharp decrease suggests that the contribution of surface soil respiration (RS) to total soil CO2 flux is large. In the DF soil CO2 flux increased as WL decreased below −0.7 m probably because the fast aerobic decomposition continued in lower peat. Such an increase in CO2 flux at low WLs was also found at the stand level of the DF. Soil CO2 flux showed diurnal variation with a peak in the daytime, which would be caused by the circadian rhythm of root respiration. Among the land-use types, annual soil CO2 flux was the largest in the DRF and the smallest in the AL. Overall, the global warming potential (GWP) of CO2 emissions in these land-use types was much larger than that of CH4 fluxes.  相似文献   

19.
To explore within-gap spatial patterns of soil surface CO2 flux, we measured instantaneous soil surface CO2 flux, soil surface temperature, and soil moisture in north–south transects across canopy gaps and in adjacent contiguous forest from April to November 2010 in a second-growth northern hardwood forest in Wisconsin, USA. Throughout the growing season, soil surface CO2 flux was higher in the northern 1/3 and northern edge of gaps compared to the central and southern portions. These patterns were driven primarily by within-gap variation in soil temperature, which was itself driven by within-gap patterns of insolation. Most locations in the northern 1/3 and northern edge of gaps had significantly higher modeled total growing season C flux (mean 725 g C m−2) compared to the contiguous forest (mean 706 g C m−2), whereas C flux in the central and southern portions of gaps (mean 555 g C m−2) was significantly lower than both the contiguous forest and the northern portions of gaps.  相似文献   

20.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号