首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method to assign a protein structure to a functional family using family-specific fingerprints. Fingerprints represent amino acid packing patterns that occur in most members of a family but are rare in the background, a nonredundant subset of PDB; their information is additional to sequence alignments, sequence patterns, structural superposition, and active-site templates. Fingerprints were derived for 120 families in SCOP using Frequent Subgraph Mining. For a new structure, all occurrences of these family-specific fingerprints may be found by a fast algorithm for subgraph isomorphism; the structure can then be assigned to a family with a confidence value derived from the number of fingerprints found and their distribution in background proteins. In validation experiments, we infer the function of new members added to SCOP families and we discriminate between structurally similar, but functionally divergent TIM barrel families. We then apply our method to predict function for several structural genomics proteins, including orphan structures. Some predictions have been corroborated by other computational methods and some validated by subsequent functional characterization.  相似文献   

2.
Syntaxins are a large group of proteins found in all eukaryotes involved in the fusion of transport vesicles to target membranes. Twenty-four syntaxins grouped into 10 gene families are found in the model plant Arabidopsis thaliana, each group containing one to five paralogous members. The Arabidopsis SYP2 and SYP4 gene families contain three members each that share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) orthologs of the SYP2 and SYP4 gene families (Pep12p and Tlg2p, respectively) indicate that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruptions in two genes from each family, finding that disruption of individual syntaxins from these families is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption with its cognate transgene indicated that the lethality is linked to the loss of the single syntaxin gene. Thus, it is clear that each syntaxin in the SYP2 and SYP4 families serves an essential nonredundant function.  相似文献   

3.
The drug/metabolite transporter superfamily.   总被引:21,自引:0,他引:21  
Previous work defined several families of secondary active transporters, including the prokaryotic small multidrug resistance (SMR) and rhamnose transporter (RhaT) families as well as the eukaryotic organellar triose phosphate transporter (TPT) and nucleotide-sugar transporter (NST) families. We show that these families as well as several other previously unrecognized families of established or putative secondary active transporters comprise a large ubiquitous superfamily found in bacteria, archaea and eukaryotes. We have designated it the drug/metabolite transporter (DMT) superfamily (transporter classification number 2.A.7) and have shown that it consists of 14 phylogenetic families, five of which include no functionally well-characterized members. The largest family in the DMT superfamily, the drug/metabolite exporter (DME) family, consists of over 100 sequenced members, several of which have been implicated in metabolite export. Each DMT family consists of proteins with a distinctive topology: four, five, nine or 10 putative transmembrane alpha helical spanners (TMSs) per polypeptide chain. The five TMS proteins include an N-terminal TMS lacking the four TMS proteins. The full-length proteins of 10 putative TMSs apparently arose by intragenic duplication of an element encoding a primordial five-TMS polypeptide. Sequenced members of the 14 families are tabulated and phylogenetic trees for all the families are presented. Sequence and topological analyses allow structural and functional predictions.  相似文献   

4.
By searching the zebrafish expressed sequence tag (EST) database, we have identified a cDNA clone encoding a putative zebrafish cytosolic sulfotransferase (ST). This cDNA was isolated and subjected to nucleotide sequencing. Analysis of the sequence data revealed that this novel zebrafish ST displays 32-35% amino acid sequence identity to members of all major cytosolic ST gene families. Therefore, this zebrafish ST, while belonging to the cytosolic ST gene superfamily, appears to be independent from all known constituent ST gene families. Recombinant zebrafish ST, expressed using the pET23c prokaryotic expression vector and purified from transformed Escherichia coli cells, migrated as a 34-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified zebrafish ST displayed sulfating activities toward dopamine and thyroid hormones (T(3) and T(4)), with a pH optimum spanning 7-9. The enzyme also exhibited activities toward a number of xenobiotics including some flavonoids, isoflavonoids, and other phenolic compounds. A thermostability experiment revealed the enzyme to be relatively stable over a temperature range between 20 and 48 degrees C. Among 10 divalent metal cations tested, Fe(++), Hg(++), Co(++), Zn(++), Cu(++), and Cd(++) exhibited dramatic inhibitory effects on the activity of the enzyme. These results constitute a first study on the cloning, expression, and characterization of a zebrafish cytosolic ST.  相似文献   

5.
Hu L  Benson ML  Smith RD  Lerner MG  Carlson HA 《Proteins》2005,60(3):333-340
Binding MOAD (Mother of All Databases) is the largest collection of high-quality, protein-ligand complexes available from the Protein Data Bank. At this time, Binding MOAD contains 5331 protein-ligand complexes comprised of 1780 unique protein families and 2630 unique ligands. We have searched the crystallography papers for all 5000+ structures and compiled binding data for 1375 (26%) of the protein-ligand complexes. The binding-affinity data ranges 13 orders of magnitude. This is the largest collection of binding data reported to date in the literature. We have also addressed the issue of redundancy in the data. To create a nonredundant dataset, one protein from each of the 1780 protein families was chosen as a representative. Representatives were chosen by tightest binding, best resolution, etc. For the 1780 "best" complexes that comprise the nonredundant version of Binding MOAD, 475 (27%) have binding data. This significant collection of protein-ligand complexes will be very useful in elucidating the biophysical patterns of molecular recognition and enzymatic regulation. The complexes with binding-affinity data will help in the development of improved scoring functions and structure-based drug discovery techniques. The dataset can be accessed at http://www.BindingMOAD.org.  相似文献   

6.
Abdelhaleem M  Maltais L  Wain H 《Genomics》2003,81(6):618-622
Nucleic acid helicases are characterized by the presence of the helicase domain containing eight motifs. The sequence of the helicase domain is used to classify helicases into families. To identify members of the DEAD and DEAH families of human RNA helicases, we used the helicase domain sequences to search the nonredundant peptide sequence database. We report the identification of 36 and 14 members of the DEAD and DEAH families of putative RNA helicases, including several novel genes. The gene symbol DDX had been used previously for both DEAD- and DEAH-box families. We have now adopted DDX and DHX symbols to denote DEAD- and DEAH-box families, respectively. Members of human DDX and DHX families of putative RNA helicases play roles in differentiation and carcinogenesis.  相似文献   

7.
The bile/arsenite/riboflavin transporter (BART) superfamily   总被引:1,自引:0,他引:1  
Secondary transmembrane transport carriers fall into families and superfamilies allowing prediction of structure and function. Here we describe hundreds of sequenced homologues that belong to six families within a novel superfamily, the bile/arsenite/riboflavin transporter (BART) superfamily, of transport systems and putative signalling proteins. Functional data for members of three of these families are available, and they transport bile salts and other organic anions, the bile acid:Na(+) symporter (BASS) family, inorganic anions such as arsenite and antimonite, the arsenical resistance-3 (Acr3) family, and the riboflavin transporter (RFT) family. The first two of these families, as well as one more family with no functionally characterized members, exhibit a probable 10 transmembrane spanner (TMS) topology that arose from a tandemly duplicated 5 TMS unit. Members of the RFT family have a 5 TMS topology, and are homologous to each of the repeat units in the 10 TMS proteins. The other two families [sensor histidine kinase (SHK) and kinase/phosphatase/synthetase/hydrolase (KPSH)] have a single 5 TMS unit preceded by an N-terminal TMS and followed by a hydrophilic sensor histidine kinase domain (the SHK family) or catalytic domains resembling sensor kinase, phosphatase, cyclic di-GMP synthetase and cyclic di-GMP hydrolase catalytic domains, as well as various noncatalytic domains (the KPSH family). Because functional data are not available for members of the SHK and KPSH families, it is not known if the transporter domains retain transport activity or have evolved exclusive functions in molecular reception and signal transmission. This report presents characteristics of a unique protein superfamily and provides guides for future studies concerning structural, functional and mechanistic properties of its constituent members.  相似文献   

8.
9.
Wang CC  Chen JH  Yin SH  Chuang WJ 《Proteins》2006,64(1):219-226
Different programs and methods were employed to superimpose protein structures, using members of four very different protein families as test subjects, and the results of these efforts were compared. Algorithms based on human identification of key amino acid residues on which to base the superpositions were nearly always more successful than programs that used automated techniques to identify key residues. Among those programs automatically identifying key residues, MASS could not superimpose all members of some families, but was very efficient with other families. MODELLER, MultiProt, and STAMP had varying levels of success. A genetic algorithm program written for this project did not improve superpositions when results from neighbor-joining and pseudostar algorithms were used as its starting cases, but it always improved superpositions obained by MODELLER and STAMP. A program entitled PyMSS is presented that includes three superposition algorithms featuring human interaction.  相似文献   

10.
Sialic acids are negatively charged acidic sugars, and sialylglycoconjugates often play important roles in various biological phenomena. Sialyltransferases are involved in the synthesis of sialylglycoconjugates, and 20 members of the mammalian sialyltransferase family have been identified to date. These sialyltransferases are grouped into four families according to the carbohydrate linkages they synthesize: beta-galactoside alpha2,3-sialyltransferases (ST3Gal I-VI), beta-galactoside alpha2,6-sialyltransferases (ST6Gal I and II), GalNAc alpha2,6-sialyltransferases (ST6GalNAc I-VI), and alpha2,8-sialyltransferases (ST8Sia I-VI). Analysis of the amino acid sequence similarities, substrate specificities, and gene structures of mouse sialyltransferases has revealed that they can be further divided into seven subfamilies. The genomic structural resemblance of members of the same subfamily suggests that they arose from a common ancestral gene through gene duplication events. These multiple sialyltransferase genes are needed for fine control of the expression of sialylglycoconjugates, resulting in a variety of developmental stage- and tissue-specific glycosylation patterns.  相似文献   

11.
Neurotransmitter transporters are key elements in the termination of the synaptic actions of the neurotransmitters. They use the energy stored in the electrochemical ion gradients across the plasma membrane of neurons and glial cells for uphill transport of the transmitters into the cells surrounding the synapse. Therefore specific transporter inhibitors can potentially be used as novel drugs for neurological disease. Sodium-coupled neurotransmitter transporters belong to either of two distinct families. The glutamate transporters belong to the SLC1 family, whereas the transporters of the other neurotransmitters belong to the SLC6 family. An exciting and recent development is the emergence of the first high-resolution structures of archeal and bacterial members belonging to these two families. In this review the functional results on prototypes of the two families, the GABA transporter GAT-1 and the glutamate transporters GLT-1 and EAAC1, are described and discussed within the perspective provided by the novel structures.  相似文献   

12.
PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super-position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 'orphans' (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The database with the web interfaced search and dendrogram generation tools can be accessed at http://pauling.mbu.iisc.ernet. in/ approximately pali.  相似文献   

13.
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.  相似文献   

14.
15.
“Extra” domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIAFru and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane α-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.  相似文献   

16.
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.  相似文献   

17.
Patel RY  Balaji PV 《Glycobiology》2006,16(2):108-116
Eukaryotic sialyltransferases (SiaTs) comprise a superfamily of enzymes catalyzing the transfer of sialic acid (Sia) from a common donor substrate to various acceptor substrates in different linkages. These enzymes have been classified as ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia families based on linkage- and acceptor monosaccharide-specificities and sequence similarities. It was recognized early on that SiaTs contain certain well-conserved motifs, and these were denoted as L (large)-, S (small)-, and VS (very small)-motifs; recently, a fourth motif, denoted as motif III, was identified. These four motifs are common to all the SiaTs, irrespective of the linkage- and acceptor saccharide-specificities. In this study, the sequences of the various families have been analyzed, and sequence motifs that are unique to the various families have been identified. These unique motifs are expected to contribute to the characteristic linkage- and acceptor saccharide-specificities of the family members. One of the linkage specific motifs is contiguous to L-motif. Members of ST3Gal and ST8Sia families share significant sequence similarities; in contrast, the ST6Gal family is distinct from the ST6GalNAc family. The latter consists of two subfamilies, one comprising ST6GalNAc I and ST6GalNAc II, and the other comprising ST6GalNAc III, ST6GalNAc IV, ST6GalNAc V, and ST6GalNAc VI. Each of these subfamilies has characteristic sequence motifs not present in the other subfamily.  相似文献   

18.
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.  相似文献   

19.
We present the first release of a database devoted to the ATP-binding cassette (ABC) protein domains (ABCdb). The ABC proteins are involved in a wide variety of physiological processes in Archea, Bacteria and Eucaryota where they are encoded by large families of paralogous genes. The majority of ABC domains energize the transport of compounds across the membranes. In bacteria, ABC transporters are involved in the uptake of a wide range of molecules and in mechanisms of virulence and antibiotic resistance. In eukaryotes, most of them are involved in drug resistance and in human cells, many are associated with diseases. Sequence analysis reveals that members of the ABC superfamily can be organized into sub-families and suggests that they have diverged from common ancestral forms. In this release, ABCdb includes the inventory and assembly of the ABC transporter systems of completely sequenced genomes. In addition to the protein entries, the database comprises information on functional domains, sequence motifs, predicted trans-membrane segments, and signal peptides. It also includes a classification in sub-families of the ABC systems as well as a classification of the different partners of the systems. Evolutionary trees and specific sequence patterns are provided for each sub-family. The database is endowed with a powerful query system and it was interfaced with blastP2 program for similarity searches. ABCdb has been developed in the ACeDB format, a database system developed by Jean Thierry-Mieg and Richard Durbin. ABCdb can be accessed via the World Wide Web (http://ir2lcb.cnrs-mrs.fr/ABCdb/).  相似文献   

20.
植物铜转运蛋白的结构和功能   总被引:1,自引:0,他引:1  
铜(Cu)是植物必需的微量营养元素, 参与植物生长发育过程中的许多生理生化反应。Cu缺乏或过量都会影响植物的正常新陈代谢过程。因此, 植物需要一系列Cu转运蛋白协同作用以保持体内Cu离子的稳态平衡。通常, Cu转运蛋白可分为两类, 即吸收型Cu转运蛋白(如COPT、ZIP和YSL蛋白家族)和排出型Cu转运蛋白(如HMA蛋白家族), 主要负责Cu离子的跨膜转运及调节Cu离子的吸收和排出。然而, 最近有研究表明, 有些Cu伴侣蛋白家族可能是从Cu转运蛋白家族进化而来, 且它们在维持植物细胞Cu离子稳态平衡中也具重要功能。该文对Cu转运蛋白和Cu伴侣蛋白的表达、结构、定位及功能等研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号