首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   97篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   14篇
  2006年   11篇
  2005年   15篇
  2004年   13篇
  2003年   18篇
  2002年   14篇
  2001年   15篇
  2000年   15篇
  1999年   16篇
  1998年   9篇
  1997年   6篇
  1996年   13篇
  1995年   6篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1951年   1篇
排序方式: 共有400条查询结果,搜索用时 15 毫秒
1.
2.
22Na+ uptake measurements were conducted on the dog kidney cell line, MDCK, to determine the mechanism of ouabain-insensitive sodium transport. The radioisotope was found to be taken up into monolayer cultures via an ATP-independent, saturable process (Km = 40 mM). The presence of sodium on the opposite side of the membrane gave rise to a transstimulation of the 22Na+ flux. Studies utilizing potassium and valinomycin suggested that the transport system was insensitive to changes in the membrane potential. Replacement of chloride in the assay buffer with other anions did not decrease the rate of 22Na+ uptake at 14 mMNa+, but bicarbonate and acetate were stimulatory. Potassium and rubidium increased the rate of 22Na+ influx (Ka = 13mM with 14 mM NaCL in the medium). Lithium (Ki = 7.5mM) and amiloride (Ki = 1.7 x 10(-5) M) were competitive and partially (or mixed) competitive inhibitors, respectively. The data are consistent with a mechanism of sodium uptake that includes a carrier(s) capable of catalyzing net sodium uptake and sodium-sodium exchange.  相似文献   
3.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
4.
The Transporter Classification (TC) system is a functional/phylogenetic system designed for the classification of all transmembrane transport proteins found in living organisms on Earth. It parallels but differs from the strictly functional EC system developed decades ago by the Enzyme Commission of the International Union of Biochemistry and Molecular Biology (IUBMB) for the classification of enzymes. Recently, the TC system has been adopted by the IUBMB as the internationally acclaimed system for the classification of transporters. Here we present the characteristics of the nearly 400 families of transport systems included in the TC system and provide statistical analyses of these families and their constituent proteins. Specifically, we analyze the transporter types for size and topological differences and analyze the families for the numbers and organismal sources of their constituent members. We show that channels and carriers exhibit distinctive structural and topological features. Bacterial-specific families outnumber eukaryotic-specific families about 2 to 1, while ubiquitous families, found in all three domains of life, are about half as numerous as eukaryotic-specific families. The results argue against appreciable horizontal transfer of genes encoding transporters between the three domains of life over the last 2 billion years.  相似文献   
5.
6.
The Δ‐distance maps can detect local remodeling that is difficult to accurately determine using superimpositions. Transmembrane segments (TMSs) 11 in both LacY and XylE of the major facilitator superfamily uniquely contribute the greatest amount of mobile surface area in the outward‐occluded state and undergo analogous movements. The intracellular part of TMS11 moves away from the C‐terminal domain and into the substrate cavity during the conformational change from the outward‐occluded to the inward‐occluded state. A difference was noted between LacY and XylE when they assumed the inward open state after releasing a substrate to the inside in which TMS11 of LacY moved further into the substrate release space, whereas in XylE, TMS11 slightly retracted into the C‐terminal domain. Independent movement of the N‐terminal half of TMS11 suggests that it is flexible in the middle. Repeat‐swapped homology modeling was used to discover that a loop connecting TMSs 10 and 11 in LacY probably moves during the transition between the unavailable outward‐open state and the outward‐occluded state. TMSs 11 and the other elements displaying a notable domain‐independent movement colocalize with the interdomain linker, suggesting that these elements could drive the alternating access movement between the domain halves. Preliminary evidence indicates that analogous movements occur in other members of the major facilitator superfamily. Proteins 2015; 83:735–745. © 2015 Wiley Periodicals, Inc.  相似文献   
7.
As the volume of data relating to proteins increases, researchers rely more and more on the analysis of published data, thus increasing the importance of good access to these data that vary from the supplemental material of individual articles, all the way to major reference databases with professional staff and long‐term funding. Specialist protein resources fill an important middle ground, providing interactive web interfaces to their databases for a focused topic or family of proteins, using specialized approaches that are not feasible in the major reference databases. Many are labors of love, run by a single lab with little or no dedicated funding and there are many challenges to building and maintaining them. This perspective arose from a meeting of several specialist protein resources and major reference databases held at the Wellcome Trust Genome Campus (Cambridge, UK) on August 11 and 12, 2014. During this meeting some common key challenges involved in creating and maintaining such resources were discussed, along with various approaches to address them. In laying out these challenges, we aim to inform users about how these issues impact our resources and illustrate ways in which our working together could enhance their accuracy, currency, and overall value. Proteins 2015; 83:1005–1013. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   
8.
Galdieria sulphuraria and Cyanidioschyzon merolae are thermo‐acidophilic unicellular red algal cousins capable of living in volcanic environments, although the former can additionally thrive in the presence of toxic heavy metals. Bioinformatic analyses of transport systems were carried out on their genomes, as well as that of the mesophilic multicellular red alga Chondrus crispus (Irish moss). We identified transport proteins related to the metabolic capabilities, physiological properties, and environmental adaptations of these organisms. Of note is the vast array of transporters encoded in G. sulphuraria capable of importing a variety of carbon sources, particularly sugars and amino acids, while C. merolae and C. crispus have relatively few such proteins. Chondrus crispus may prefer short chain acids to sugars and amino acids. In addition, the number of encoded proteins pertaining to heavy metal ion transport is highest in G. sulphuraria and lowest in C. crispus. All three organisms preferentially utilize secondary carriers over primary active transporters, suggesting that their primary source of energy derives from electron flow rather than substrate‐level phosphorylation. Surprisingly, the percentage of inorganic ion transporters encoded in C. merolae more closely resembles that of C. crispus than G. sulphuraria, but only C. crispus appears to signal via voltage‐gated cation channels and possess a Na+/K+‐ATPase and a Na+ exporting pyrophosphatase. The results presented in this report further our understanding of the metabolic potential and toxic compound resistances of these three organisms.  相似文献   
9.
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.  相似文献   
10.
This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号