首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
【背景】罗非鱼作为联合国粮农组织(FAO)向全世界推广养殖的优良品种之一,有多个品系,其养殖范围已遍布85个国家和地区。1956年我国从越南引进莫桑比克罗非鱼,经过养殖及推广,2006年我国罗非鱼产量达到100万t。但是,该外来物种在给我国带来良好经济价值的同时,对土著种类及水环境造成了极大的影响。【方法】对近几年珠江水系渔获物的调查数据进行整理,并观察尼罗罗非鱼早期发育形态,统计尼罗罗非鱼苗对其他鱼苗的最大捕食量及捕食规格,以分析罗非鱼生物学特性及其在珠江水系的入侵现状。【结果】尼罗罗非鱼早期发育快,卵黄营养非常丰富,比珠江水系土著种类更有竞争性;罗非鱼苗呈现很强的攻击性与捕食性;尼罗罗非鱼已经扩散到珠江水系各主要河流,并在部分江段形成优势种群。【结论与意义】尼罗罗非鱼种群快速扩张,对土著种已构成严重威胁,有必要将其列为珠江水系高危入侵种。  相似文献   

2.
Approximately 50 years ago, Nile tilapia were accidentally introduced to Brazil, and the decline of pearl cichlid populations, which has been intensified by habitat degradation, in some locations has been associated with the presence of Nile tilapia. There is, however, little strong empirical evidence for the negative interaction of non-native fish populations with native fish populations; such evidence would indicate a potential behavioural mechanism that could cause the population of the native fish to decline. In this study, we show that in fights staged between pairs of Nile tilapia and pearl cichlids of differing body size, the Nile tilapia were more aggressive than the pearl cichlid. Because this effect prevailed over body-size effects, the pearl cichlids were at a disadvantage. The niche overlap between the Nile tilapia and the pearl cichlid in nature, and the competitive advantage shown by the Nile tilapia in this study potentially represent one of several possible results of the negative interactions imposed by an invasive species. These negative effects may reduce population viability of the native species and cause competitive exclusion.  相似文献   

3.
This study applied ecological niche models to determine the potential invasive range of Nile tilapia, Oreochromis niloticus, with a particular focus on river systems in southern Africa where it is now established and spreading. Computational tools such as niche models are useful in predicting the potential range of invasive species, but there are limitations to their application. In particular, models trained on native records may fail to predict the full extent of an invasion. This failure is often attributed to changes in either the niche of the invading species or the variables used to develop the models. In this study, we therefore evaluated the differences in the predictive power of models trained with different environmental variables, the effect of species range (native vs. introduced) on model performance and assessed whether or not there is evidence suggestive of a niche shift in Nile tilapia following its introduction. Niche models were constructed using Maxent and the degree of niche similarity was assessed using Schoener`s index. Null models were used to test for significance. Model performance and niche conservatism varied significantly with variable selection and species range. This indicates that the environmental conditions available to Nile tilapia in its native and introduced ranges are not congruent. Nile tilapia exhibited broad invasive potential over most of southern Africa that overlaps the natural range of endemic congenerics. Of particular concern are areas which are free of exotic species but are now vulnerable due to the promotion of fish introductions mainly for aquaculture and sport fishing.  相似文献   

4.
Lake Ziway harbours indigenous and exotic fish species including Nile tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio). Nile tilapia was the dominant and preferred fish. However, its contribution to total catch has dramatically declined from 89.3% in 1994 to 27% in 2014 while the introduced common carp has increased from 0% before 2012 to 25% in 2014. Common carp potentially compete with Nile tilapia for available resources and could be a cause for the decline. Thus, the study explored the dietary overlap of the two species from April to August 2017. Schoener's overlap index (α) revealed significant dietary overlap between the two species (α = 0.84, between juveniles and α = 0.63, between adults). Juveniles fed mainly on animal origin (zooplankton and insects), while adult Nile tilapia have consumed plant origin (macrophyte and phytoplankton), and adult common carp fed on macrophytes and detritus. The presence of significant dietary overlap between the two species, particularly due to intense competition among juveniles, might cause the reduction of Nile tilapia stock because the native species has shown a competitive disadvantage for food in the presence of common carp. This study provides baseline information to researchers and decision makers working towards the sustainable resource utilisation of the system.  相似文献   

5.
The piscivorous Nile perch was introduced into Lake Victoria some 30 years ago, since when it has completely transformed the fishing industry and the species composition of the fish fauna of the lake. The original multispecies fishery, based mostly on cichlids (haplochromines, tilapias), cyprinids ( Barbus, Labeo, Rastrineobola ) and siluroids ( Bagrus, Clarias, Synodontis, Schilbe ), has changed dramatically to one based on three species: the introduced Nile perch, the cyprinids, Rastrineobola argenrea (Pellegrin), and the introduced Nile tilapia, Oreochromis niloticus (Linnaeus).
Within 25 years of its introduction the Nile perch became ubiquitous and now occurs in virtually every habitat with the exception of swamps and affluent rivers. It has preyed on all other species with profound effects, especially on the stocks of haplochromines. These originally comprised 80% of the total fish biomass in Lake Victoria, but have now decreased to less than 1% offish catches from the Kenyan waters of the lake. The fishermen of Lake Victoria have adjusted to this ecological crisis by using large-meshed nets to catch Nile perch, which has become the most important commercial species. For the first time in the history of Lake Victoria, fish fillets are now being exported to several overseas countries: the fillets are all from Nile perch.  相似文献   

6.
Synopsis Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus, were originally transplanted from Lake Albert in western Uganda to the African Great Lakes, Lake Victoria and Lake Kyoga, where they are partially implicated in reduction of the fish species diversity. Lake Albert is facing multiple environmental changes, including declining fish species diversity, hyper-eutrophication, hypoxia, and reduced fish catches. To examine the role of Nile perch and Nile tilapia in the food web in their native Lake Albert, we estimated their diets using stable nitrogen and carbon isotopes. In Lake Albert, the tilapiine congeners (closely related species), Tilapia zillii, Oreochromis leucostictus, and Sarethorodon galilaeus, and the centropomid Nile perch congener, Lates macrophthalmus, have narrower diet breath in the presence of the native O. niloticus and L. niloticus. A computerized parameter search of dietary items for five commercially important fish species (Hydrocynus forskahlii, Bagrus bayad, L. niloticus, Alestes baremose and Brycinus nurse) was completed using a static isotopic mixing model. The outcome of the simulation for most fish species compared favorably to previously published stomach contents data for the Lake Albert fishes dating back to 1928, demonstrating agreement between stable isotope values and analyses of stomach contents. While there were some indications of changes in the diets of L. niloticus and A. baremose diets over the past 20 years in parallel with other changes in the lake, for the most part, food web structure in this lake remained stable since 1928. The Lake Albert fish assemblage provides insight into the invasion success of L. niloticus and O. niloticus.  相似文献   

7.
African tilapias (Oreochromis spp.) occur in more than 100 countries outside of their native ranges and research on their invasions is largely lacking. We investigated spatiotemporal patterns of tilapia spread into 29 drainage basins in Belize and parts of Guatemala and Mexico, drawing on field data and interviews with fishermen. Habitat-suitability models for tilapias were created from geospatial and species occurrence data, and fishermen interviews were used to reconstruct the chronology of tilapia spread into predicted suitable habitats. Tilapia (predominantly Nile tilapia, O. niloticus) presence was confirmed at 78 sites in 9 of 29 drainage basins. Our habitat-suitability model predicted that 7,510 linear km of river habitat in the study area were vulnerable to colonization by tilapias, predominately in mid- to low elevation main stem rivers, from sea level to 277 m above sea level. The reconstructed spatial chronology of spread showed that the invasion started in 1990 and progressed slowly (2 km yr?1) through an establishment phase before rapid expansion (~30 km yr?1) between 1996 and 2002, after which new detections slowed. Human movement of fish for aquaculture was identified as a primary cause of dispersal that interacted with flooding as an important secondary cause. The shortest paths across low elevation drainage divides between major basins revealed several potential corridors for future tilapia spread during flooding. Research into tilapia spatial metapopulation structure and economic fisheries status, more stringent regulation of aquaculture activities, pro-active fisheries management, and development of policies to screen potentially invasive species before importation are recommended to avoid additional releases of tilapia and further spread in the region.  相似文献   

8.
Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important.  相似文献   

9.
Empirical studies suggest that most exotic species have fewer parasite species in their introduced range relative to their native range. However, it is less clear how, ecologically, the loss of parasite species translates into a measurable advantage for invaders relative to native species in the new community. We compared parasitism at three levels (species richness, abundance and impact) for a pair of native and introduced cichlid fishes which compete for resources in the Panama Canal watershed. The introduced Nile tilapia, Oreochromis niloticus, was infected by a single parasite species from its native range, but shared eight native parasite species with the native Vieja maculicauda. Despite acquiring new parasites in its introduced range, O. niloticus had both lower parasite species richness and lower parasite abundance compared with its native competitor. There was also a significant negative association between parasite load (abundance per individual fish) and host condition for the native fish, but no such association for the invader. The effects of parasites on the native fish varied across sites and types of parasites, suggesting that release from parasites may benefit the invader, but that the magnitude of release may depend upon interactions between the host, parasites and the environment.  相似文献   

10.
Nile tilapia farmers must deal with production challenges, such as increased aggressiveness and high stress levels, which potentially diminishes fish welfare. Tryptophan supplementation is a strategy to cope with such problems. However, data is scarce on how tryptophan affects the aggressiveness of this species and other aspects need to be understood on how it influences stress in fish. In this study, we investigate how a 1× (0.32%), 4× (1.28%) and 8× (2.56%) supplemented tryptophan diet affects aggressiveness and stress in Nile tilapia. Aggressiveness in fish was assessed after short-term exposure (7 days) to a tryptophan supplemented diet while stress in fish was assessed after long-term exposure (60 days). The 4x and 8x diets reduced aggressiveness in fish, while the 8x diet reduced aggressiveness more effectively than the 4x diet. Also, long-term exposure to the 8x diet reduced stress in fish, before and after they were exposed to an acute stress. In conclusion, this study showed that a tryptophan supplemented diet can diminish aggressiveness and stress in Nile tilapia, thus demonstrating a potential to improve fish welfare.  相似文献   

11.
The Nile tilapia fish (Oreochromis niloticus) has a high potential to be used as a model in neuroscience studies. In the present study, the preference of the Nile tilapia between a gravel-enriched (GEE), a shelter-enriched (SEE) or a non-enriched (NEE) environment was determined, for developing a place preference model. Nile tilapia had an initial preference for GEE, but after 1 day of observation, the fish stabilized their frequency of visits among compartments. Hence, any stimulus motivating tilapia increase in compartment visiting indicates a positively reinforcing effect. This feature is very useful for the development of new behavioural paradigms for fish in tests using environmental discrimination, such as the conditioning place preference test.  相似文献   

12.
13.
四个罗非鱼选育品种抗链球菌病能力差异研究   总被引:1,自引:0,他引:1  
为筛选出抗病力优良的罗非鱼品种, 以奥利亚罗非鱼“夏奥1号”、尼罗罗非鱼“99”埃及品系、吉富罗非鱼“中威1号”和奥尼罗非鱼为研究对象, 33℃水温暂养7d后分别进行无乳链球菌人工感染实验, 连续7d统计累计死亡率, 并于人工感染后0、24h、48h和72h采集血液和组织样本, 研究这4个罗非鱼选育品种抗链球菌病能力的差异。结果显示: 感染7d后奥尼罗非鱼的累计死亡率最低; 奥尼罗非鱼的谷草转氨酶(AST)感染前后始终都低于其余3个品种罗非鱼(P<0.05); 埃及尼罗和奥尼在感染72h后球蛋白(GLO)分别显著升高1.13倍和1.41倍; 奥尼罗非鱼白蛋白/球蛋白(A/G)在感染前后没有显著性变化(P>0.05), 而其余3个品种罗非鱼A/G比值在感染后都显著性降低(P<0.05); 埃及尼罗的碱性磷酸酶(AKP)在感染72h后显著降低(P<0.05), 奥利亚和吉富的AKP表现为先上升后下降, 奥尼的AKP感染前后没有显著性变化(P>0.05); 各品种罗非鱼血清中的乳酸脱氢酶(LDH)感染后都显著升高(P<0.05); 奥利亚、吉富和奥尼罗非鱼的超氧化歧化酶(SOD)感染48h时都显著升高(P<0.05); 奥尼罗非鱼在感染前后溶菌酶(LZM)活性都显著高于其余3个品种罗非鱼(P<0.05)。组织病理学结果显示:吉富和奥尼肝细胞水肿变性, 而奥利亚和埃及尼罗出现大面积肝细胞脂肪变性; 每个品种罗非鱼均呈现严重的脾炎, 奥利亚、埃及尼罗和吉富的脾脏中大量铁血黄素沉积; 每种罗非鱼呈现不同程度的肾小球萎缩, 肾小管上皮细胞变性、坏死。研究表明奥尼罗非鱼抗链球菌病能力最强, 感染后血清中AST水平与肝受损程度呈一定的正相关, LZM水平和罗非鱼抗链球菌病能力呈一定的正相关。  相似文献   

14.
Hydrobiologia - The invasive species Nile tilapia is a filter-feeding omnivorous fish that can have a negative effect on zooplankton and phytoplankton resources. However, the strength of its...  相似文献   

15.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

16.
Planthoppers and leafhoppers are important rice pests. We tried to find out whether a polyculture of silver barb, common carp and Nile tilapia could control hoppers in intensively cropped rice fields. We used the data of five rice-fish experiments conducted between 1995 and 1998 at the Co Do rice-fish research station, Can Tho province, Mekong Delta, Vietnam. Our results showed that the number of Nilaparvata lugens (Stål), Sogatella furcifera (Horváth), Nephotettix virescens (Distant) and Recilia dorsalis (Motschulsky) was the same in fields with and without stocked fish. We concluded that the three stocked fish species are not able to control hopper numbers. Other, predatory fish species might be more effective in hopper control.  相似文献   

17.
The introduction of invasive Nile tilapia (Oreochromis niloticus), and the rapacious predator Nile perch (Lates niloticus), into Lake Victoria resulted in a decline in population sizes, genetic diversity and even extirpation of native species which were previously the mainstay of local fisheries. However, remnant populations of native fish species, including tilapia, still persist in satellite lakes around Lake Victoria where they may coexist with O. niloticus. In this study we assessed population genetic structure, diversity, and integrity of the native critically endangered Singidia tilapia (O. esculentus) in its refugial populations in the Yala swamp, Kenya, and contrasted this diversity with populations of the invasive tilapia O. niloticus in satellite lakes (Kanyaboli, Namboyo and Sare) and Lake Victoria. Based on mtDNA control region sequences and eight nuclear microsatellite loci, we did not detect any mtDNA introgression between the native and the invasive species in Lakes Kanyaboli and Namboyo, but did find low levels of nuclear admixture, primarily from O. niloticus to O. esculentus. Some genetic signal of O. esculentus in O. niloticus was found in Lake Sare, where O. esculentus is not found, suggesting it has recently been extirpated by the O. niloticus invasion. In both species, populations in the satellite lakes are significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles. For O. niloticus, genetic diversity in satellite lakes was similar to that found in Lake Victoria. Our data imply a low frequency of immigration exchange between the two populations of O. esculentus and we suggest that the populations of this endangered species and important fisheries resource should be conserved separately in Lakes Kanyaboli and Namboyo and with high priority.  相似文献   

18.
We examined the diet of the alien Nile tilapia and bluegill, redear sunfish, and largemouth bass over a two-year period in coastal Mississippi. Nile tilapia diet was visually separated from the three natives based on group-average linkage cluster analysis. Sequential two-way nested analysis of similarities indicted there was no season effect (Global R = 0.026, P = 24.3%), but there was a moderate size class effect (Global R = 0.457, P = 0.1%) and a strong species effect (Global R = 0.876, P = 0.1%). Pairwise tests indicated species fed on different components of and locations within the environment, with bluegill, redear sunfish and largemouth bass (all R ≤ 0.683, P = 0.1%) having the most similar dietary components and Nile tilapia (all R ≥ 0.953, P = 0.1%) having the most distinct. Multivariate dispersion indicated that largemouth bass (1.425) and bluegill (1.394) had the most diverse diets compared to redear sunfish (0.906) and Nile tilapia (0.918). Similarities of percentages indicated that diets were separated based on prey: bluegill and redear sunfish consumed chironomids and insects; largemouth bass consumed fish and insects; and Nile tilapia fed most often on sediment resources such as nematodes, rotifers, bryozoans and hydrozoans. Nile tilapia had the highest frequency of mud, sand and detritus in their stomachs, suggesting they fed directly on bottom sediments. These data and the fact that Nile tilapia has a 1.3–7.6 times longer intestine on average than its body length, support our contention that this alien species feeds at the base of the food web and is well adapted to survive and proliferate in non-native environments.  相似文献   

19.
Understanding the fundamental niche of invasive species facilitates our ability to predict both dispersal patterns and invasion success and therefore provides the basis for better-informed conservation and management policies. Here we focus on Nile tilapia (Oreochromis niloticus Linnaeus, 1758), one of the most widely cultured fish worldwide and a species that has escaped local aquaculture facilities to become established in a coastal-draining river in Mississippi (northern Gulf of Mexico). Using empirical physiological data, logistic regression models were developed to predict the probabilities of Nile tilapia survival, growth, and reproduction at different combinations of temperature (14 and 30°C) and salinity (0-60, by increments of 10). These predictive models were combined with kriged seasonal salinity data derived from multiple long-term data sets to project the species' fundamental niche in Mississippi coastal waters during normal salinity years (averaged across all years) and salinity patterns in extremely wet and dry years (which might emerge more frequently under scenarios of climate change). The derived fundamental niche projections showed that during the summer, Nile tilapia is capable of surviving throughout Mississippi's coastal waters but growth and reproduction were limited to river mouths (or upriver). Overwinter survival was also limited to river mouths. The areas where Nile tilapia could survive, grow, and reproduce increased during extremely wet years (2-368%) and decreased during extremely dry years (86-92%) in the summer with a similar pattern holding for overwinter survival. These results indicate that Nile tilapia is capable of 1) using saline waters to gain access to other watersheds throughout the region and 2) establishing populations in nearshore, low-salinity waters, particularly in the western portion of coastal Mississippi.  相似文献   

20.
We used a mathematical model to predict and explain the effect of harvesting combined with predation by the Nile perch on Nile tilapia. The model incorporates three developmental stages of each species. The findings show that uncontrolled human exploitation of the stock leads to loss of fish biodiversity in the lake. The results of the study also show that increasing harvesting rate of the mature Nile perch leads to stable stationary states of the system. However, increasing predation rates by Nile perch lead to unstable equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号