首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The expression pattern of pathogenesis‐related genes PR‐1, PR‐2 and PR‐5, considered as markers for salicylic acid (SA)‐dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre‐treated with SA and subsequently infected with root‐knot nematodes (RKNs) (Meloidogyne incognita). PR‐1 was up‐regulated in both roots and shoots of SA‐treated plants, whereas the expression of PR‐5 was enhanced only in roots. The over‐expression of PR‐1 in the whole plant occurred as soon as 1 day after SA treatment. Up‐regulation of the PR‐1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA‐treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR‐1, PR‐2 and PR‐5 was also examined in the roots and shoots of susceptible and Mi‐1‐carrying resistant tomato plants infected by RKNs. Nematode infection produced a down‐regulation of PR genes in both roots and shoots of SA‐treated and untreated plants, and in roots of Mi‐carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR‐1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR‐like response to RKNs in tomato.  相似文献   

4.
5.
Systemic acquired resistance (SAR) is a plant immune response induced by local necrotizing pathogen infections. Expression of SAR in Arabidopsis (Arabidopsis thaliana) plants correlates with accumulation of salicylic acid (SA) and up-regulation of Pathogenesis-Related (PR) genes. SA is an essential and sufficient signal for SAR. In a genetic screen to search for negative regulators of PR gene expression and SAR, we found a new mutant that is hypersensitive to SA and exhibits enhanced induction of PR genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis Noco2. The enhanced pathogen resistance in the mutant is Nonexpressor of PR genes1 independent. The mutant gene was identified by map-based cloning, and it encodes a protein with high homology to Replication Factor C Subunit3 (RFC3) of yeast and other eukaryotes; thus, the mutant was named rfc3-1. rfc3-1 mutant plants are smaller than wild-type plants and have narrower leaves and petals. On the epidermis of true leaves, there are fewer cells in rfc3-1 compared with the wild type. Cell production rate is reduced in rfc3-1 mutant roots, indicating that the mutated RFC3 slows down cell proliferation. As Replication Factor C is involved in replication-coupled chromatin assembly, our data suggest that chromatin assembly and remodeling may play important roles in the negative control of PR gene expression and SAR.  相似文献   

6.
β‐Aminobutyric acid (BABA) pretreatment of Brassica plants protected them against the necrotrophic pathogen Alternaria brassicae. The achieved resistance level was much higher than that seen after salicylic acid (SA) and jasmonic acid (JA) pretreatments. BABA pretreatment to the leaves, 1 day before inoculation, led to an inhibition of the oxidative burst and a decrease in SA levels, but did not influence lipoxygenase activity nor cause callose deposition at the site of inoculation. Expression of two marker genes of the SA and JA pathways, namely PR1 and PDF1.2, was enhanced in response to BABA pretreatment. Our results indicate that BABA‐induced resistance is mediated through an enhanced expression of pathogenesis‐related protein genes, independent of SA and JA accumulation.  相似文献   

7.
水稻病程相关蛋白质在逆境胁迫下的表达研究   总被引:1,自引:0,他引:1       下载免费PDF全文
植物病程相关(PR)基因一般在病原物侵染过程中受诱导发生转录上调.目前有证据提示植物PR基因在非生物逆境胁迫下也发生转录变化,但其蛋白质的表达变化情况还鲜有报道.为了解水稻PR蛋白质在逆境胁迫下的表达特征,本文采用免疫印迹技术(Western blotting,WB)调查了8个PR蛋白质在冷、热、旱、淹和盐等5种胁迫下的表达谱.结果表明:在冷胁迫下PR8表达上调,在热胁迫下PR1a、PR3、PR5和PR16表达下调;在旱胁迫下PR1a、PR2和PR8表达上调,而PR5 和PR16表达下调,在淹胁迫下PR1、PR2和PR15表达上调,PR1a、PR3、PR5和PR8表达下调;在盐胁迫下PR2和PR3表达上调,而PR1a、PR5、PR8和PR16表达下调.另外,对这些PR 基因的上游启动子区进行分析,发现存在与胁迫响应相关的调控元件,其中脱落酸反应元件(ABRE)、TC-rich repeats和HSE的出现频率较高.这些蛋白质表达数据进一步佐证了PR蛋白在逆境胁迫反应中发挥着重要且不尽相同的作用.  相似文献   

8.
Foliar spray with BABA led to a significant reduction of lesion development in Brassica carinata caused by Alternaria brassicae. To get better insight into molecular mechanisms underlying priming of defence responses by BABA, expression pattern of BcWRKY genes and marker genes for the SA and JA pathway namely PR‐1 and PDF 1.2 was examined. Q‐RT‐PCR analysis revealed priming of BcWRKY70, BcWRKY11 and BcWRKY53 gene expression in BABA‐pretreated Brassica plants challenged with pathogen. However, the expression of BcWRKY72 and BcWRKY18 remained unchanged. Furthermore, BcWRKY7 gene was found to be upregulated in water‐treated plants in response to pathogen indicating its role in susceptibility. In addition, BABA application potentiated expression of defence genes PR‐1, PDF1.2 and PAL in response to the pathogen. In conclusion, BABA‐primed expression of BcWRKY70, BcWRKY11 and BcWRKY53 genes is strongly correlated with enhanced expression of PR‐1, PDF1.2 and PAL hence suggesting their role in BABA‐induced resistance.  相似文献   

9.
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence‐related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE‐S‐TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen‐inoculated as well as pathogen‐free distal tissues. The loss‐of‐function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR‐associated epigenetic modifications.  相似文献   

10.
11.
12.
  • Plants have evolved a sophisticated two‐branch defence system to prevent the growth and spread of pathogen infection. The novel Cys‐rich repeat (CRR) containing receptor‐like kinases, known as CRKs, were reported to mediate defence resistance in plants. For rice, there are only two reports of CRKs. A semi‐dominant lesion mimic mutant als1 (apoptosis leaf and sheath 1) in rice was identified to demonstrate spontaneous lesions on the leaf blade and sheath.
  • A map‐based cloning strategy was used for fine mapping and cloning of ALS1, which was confirmed to be a typical CRK in rice. Functional studies of ALS1 were conducted, including phylogenetic analysis, expression analysis, subcellular location and blast resistance identification.
  • Most pathogenesis‐related (PR) genes and other defence‐related genes were activated and up‐regulated to a high degree. ALS1 was expressed mainly in the leaf blade and sheath, in which further study revealed that ALS1 was present in the vascular bundles. ALS1 was located in the cell membrane of rice protoplasts, and its mutation did not change its subcellular location. Jasmonic acid (JA) and salicylic acid (SA) accumulation were observed in als1, and enhanced blast resistance was also observed.
  • The mutation of ALS1 caused a constitutively activated defence response in als1. The results of our study imply that ALS1 participates in a defence response resembling the common SA‐, JA‐ and NH1‐mediated defence responses in rice.
  相似文献   

13.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

14.
15.
16.
Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)‐induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3‐OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3‐OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)‐related genes, ICS1 and PR1, were down‐regulated. Accordingly, in LTP3‐OX plants, we observed increased ABA levels and decreased SA levels relative to the wild‐type. We also showed that the LTP3 overexpression‐mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3‐1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA‐independent manner. However, a double mutant consisting of ltp3‐1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down‐regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA–SA balance.  相似文献   

17.
18.
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed.  相似文献   

19.
Cytosolic NADP‐dependent isocitrate dehydrogenase (cICDH) produces 2‐oxoglutarate (2‐OG) and NADPH, and is encoded by a single gene in Arabidopsis thaliana. Three allelic lines carrying T‐DNA insertions in this gene showed less than 10% extractable leaf ICDH activity, but only relatively small decreases in growth compared to wild‐type Col0. Metabolite profiling by gas chromatography–time of flight–mass spectrometry (GC–TOF–MS) and high‐performance liquid chromatography (HPLC) revealed that loss of cICDH function produced only small effects on leaf compounds involved in carbon and nitrogen assimilation. To analyse whether cICDH contributes to NADPH production under conditions of oxidative stress, the icdh mutation was introduced into the cat2 background, in which increased availability of H2O2 causes perturbed redox homeostasis and induction of stress‐related genes. Accumulation of oxidized glutathione and pathogen‐related responses were enhanced in double cat2 icdh mutants compared to cat2. Single icdh mutants presented constitutive induction of PR genes, and enhanced resistance to bacteria in icdh, cat2 and cat2 icdh was quantitatively correlated with PR gene expression. However, the effect of icdh in both Col0 and cat2 backgrounds was not associated with enhanced accumulation of salicylic acid (SA). The results suggest that cICDH, previously considered mainly as an enzyme involved in amino acid synthesis, plays a role in redox signalling linked to pathogen responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号