首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the prevalence and diversity of tetracycline resistant lactic acid bacteria (Tc(r) LAB) along the process line of two different fermented dry sausage (FDS) types, samples from the raw meat, the meat batter and the fermented end product were analysed quantitatively and qualitatively by using a culture-dependent approach. Both the diversity of the tet genes and their bacterial hosts in the different stages of FDS production were determined. Quantitative analysis showed that all raw meat components of both FDS types (FDS-01 and FDS-08) contained a subpopulation of Tc(r) LAB, and that for FDS-01 no Tc(r) LAB could be recovered from the samples after fermentation. Qualitative analysis of the Tc(r) LAB subpopulation in FDS-08 included identification and typing of Tc(r) LAB isolates by (GTG)5-PCR fingerprinting, plasmid profiling, protein profiling and a characterization of the resistance by PCR detection of tet genes. Two remarks can be made when the results of this analysis for the different samples are compared. (i) The taxonomic diversity of Tc(r) LAB varies along the process line, with a higher diversity in the raw meat (lactococci, lactobacilli, streptococci, and enterococci), and a decrease after fermentation (only lactobacilli). (ii) Also the genetic diversity of the tet genes varies along the process line. Both tet(M) and tet(S) were found in the raw meat, whereas only tet(M) was found after fermentation. A possible relationship was found between the disappearing of species other than lactobacilli and tet(S), because tet(S) was only found in lacotocci, enterococci, and streptococci. These data suggest that fermented dry sausages are among those food products that can serve as vehicles for Tc(r) LAB and that the raw meat already contains a subpopulation of these bacteria. Whether these results reflect the transfer of resistant bacteria or of bacterial resistance genes from animals to man via the food chain is difficult to ascertain and may require a combination of cultivation-dependent and cultivation-independent approaches.  相似文献   

2.
The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tcr) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)5-PCR DNA fingerprinting technique, the Tcr lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tcr lactic acid bacterial isolates displaying unique (GTG)5-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes.  相似文献   

3.
In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure (12 isolates) samples. These isolates were screened for tetracycline resistance genes (tet(K), tet(L), tet(M), tet(O), tet(S) and tet(T)). Of 88 isolates examined, three (3.4%) isolates carried both tet(M) and tet(L) genes, while four (4.5%) isolates carried the tet(L) gene. Eighty-one (92.1%) isolates did not contain any of the tested genes. All tet(M) positive isolates carried transposon Tn916 and could transfer this mobile DNA element to other Gram-positive bacteria.  相似文献   

4.
In the present study, a collection of 187 Enterococcus food isolates mainly originating from European cheeses were studied for the phenotypic and genotypic assessment of tetracycline (TC) resistance. A total of 45 isolates (24%) encompassing the species Enterococcus faecalis (n = 33), E. durans (n = 7), E. faecium (n = 3), E. casseliflavus (n = 1), and E. gallinarum (n = 1) displayed phenotypic resistance to TC with MIC ranges of 16 to 256 microg/ml. Eight of these strains exhibited multiresistance to TC, erythromycin, and chloramphenicol. By PCR detection, TC resistance could be linked to the presence of the tet(M) (n = 43), tet(L) (n = 16), and tet(S) (n = 1) genes. In 15 isolates, including all of those for which the MIC was 256 micro g/ml, both tet(M) and tet(L) were found. Furthermore, all tet(M)-containing enterococci also harbored a member of the Tn916-Tn1545 conjugative transposon family, of which 12 erythromycin-resistant isolates also contained the erm(B) gene. Filter mating experiments revealed that 10 E. faecalis isolates, 3 E. durans isolates, and 1 E. faecium isolate could transfer either tet(M), tet(L), or both of these genes to E. faecalis recipient strain JH2-2. In most cases in which only tet(M) was transferred, no detectable plasmids were acquired by JH2-2 but instead all transconjugants contained a member of the Tn916-Tn1545 family. Sequencing analysis of PCR amplicons and evolutionary modeling showed that a subset of the transferable tet(M) genes belonged to four sequence homology groups (SHGs) showing an internal homology of > or = 99.6%. Two of these SHGs contained tet(M) mosaic structures previously found in Tn916 elements and on Lactobacillus and Neisseria plasmids, respectively, whereas the other two SHGs probably represent new phylogenetic lineages of this gene.  相似文献   

5.
The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a case study using a metagenomic approach to determine the diversity of microorganisms conferring tetracycline resistance (Tc(r)) in the guts of a healthy mother-infant pair one month after childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tc(r) genes. Fecal fosmid libraries were functionally screened for Tc(r), and further PCR-screened for specific Tc(r) genes. Tc(r) fosmid inserts were sequenced at both ends to establish bacterial diversity. Mother and infant libraries contained Tc(r), although encoded by different genes and organisms. Tc(r) organisms in the mother consisted mainly of Firmicutes and Bacteroidetes, and the main gene detected was tet(O), although tet(W) and tet(X) were also found. Identical Tc(r) gene sequences were present in different bacterial families and even phyla, which may indicate horizontal transfer within the maternal GIT. In the infant library, Tc(r) was present exclusively in streptococci carrying tet(M), tet(L) and erm(T) within a novel composite transposon, Tn6079. This transposon belongs to a family of broad host range conjugative elements, implying a potential for the joint spread of tetracycline and erythromycin resistance within the infant's gut. In addition, although not found in the infant metagenomic library, tet(O) and tet(W) could be detected in the uncloned DNA purified from the infant fecal sample. This is the first study to reveal the diversity of Tc(r) bacteria in the human gut, to detect a likely transmission of antibiotic resistance from mother to infant GITs and to indicate the possible occurrence of gene transfers among distantly related bacteria coinhabiting the GIT of the same individual.  相似文献   

6.
In recent years, the food chain has been recognised as one of the main routes for transmission of antibiotic resistant bacteria between the animal and human population. In this regard, the current study aimed to investigate if tetracycline resistant (tetR) lactic acid bacteria (LAB) are present in ready-to-eat modified atmosphere packed (MAP) sliced meat products including fermented dry sausage, cooked chicken breast meat and cooked ham. From population graphs based on doubling tetracycline concentrations between 0 and 256 microg ml(-1), only fermented dry sausage was shown to contain a high-level retR LAB population (5.10(1) - 2,23.10(4) CFU/g), and this in four out of ten examined sausages. From these four positive sausages, a total of 100 strains were isolated on de Man, Rogosa and Sharpe-sorbic acid (MRS-S) agar without tetracycline (n = 45) and on MRS-S agar supplemented with a tetracycline breakpoint concentration of 64 microg ml(-1) (n = 55). Using resistance histograms derived from the disc diffusion method, all these strains were grouped as sensitive to rifampicin, erythromycin and ampicillin. All strains from the tetracycline-containing MRS-S plates were resistant to tetracycline. Identification with whole-cell protein profiling revealed that the total strain set represented four different species: Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus sakei subsp. carnosus and Lactobacillus curvatus. All species are commonly associated with fermented dry sausage, either as starter culture or as natural contaminants. The latter three species were found to comprise all tetracycline resistant strains. To our knowledge, this is the first report providing evidence for the presence of tetR LAB in final ready-to-eat pre-packed fermented dry sausages.  相似文献   

7.
The prevalence of tetracycline resistance, and of specific genetic determinants for this resistance was investigated in 1003 strains of Enterococcus faecalis isolated from various raw food products originating from five categories including chicken meat, other poultry meat, beef, pork, and 'other'. For the 238 resistant isolates identified, the ability to transfer the resistant phenotype to a given recipient in vitro was investigated. New and interesting observations were that the tet(L) resistance determinant was more readily transferred than tet(M), and that the presence of Tn916-like elements known to encode tet(M) did not correlate with increased transferability of the resistant phenotype.  相似文献   

8.
Lactobacillus sakei is a lactic acid bacterium naturally found on meat and often used as starter for the production of dry sausages or other fermented meat products. The gene encoding the green fluorescent protein (GFP) was cloned downstream from the constitutive L-lactate dehydrogenase promoter (pldhL) of L. sakei. The pldhL::gfp fusion was introduced in L. sakei either on a replicative plasmid or by double crossover integration into the chromosome, as a single copy. Both constructions were stable. Expression of GFP did not alter growth and was detectable by epifluorescence microscopy allowing the detection and monitoring of the development of GFP+ specific L. sakei strains both under growth laboratory conditions and in dry sausage samples.  相似文献   

9.
The presence of the tetracycline resistance determinant tet(M) in human clinical isolates of Escherichia coli is described for the first time in this report. The homologue was >99% identical to the tet(M) genes reported to occur in Lactobacillus plantarum, Neisseria meningitidis, and Streptococcus agalactiae, and 3% of the residues in its deduced amino acid sequence diverge from tet(M) of Staphylococcus aureus. Sequence analysis of the regions immediately flanking the gene revealed that sequences upstream of tet(M) in E. coli have homology to Tn916; however, a complete IS26 insertion element was present immediately upstream of the promoter element. Downstream from the termination codon is an insertion sequence that was homologous to the ISVs1 element reported to occur in a plasmid from Vibrio salmonicida that has been associated with another tetracycline resistance determinant, tet(E). Results of mating experiments demonstrated that the E. coli tet(M) gene was on a mobile element so that resistance to tetracycline and minocycline could be transferred to a susceptible strain by conjugation. Expression of the cloned tet(M) gene, under the control of its own promoter, provided tetracycline and minocycline resistance to the E. coli host.  相似文献   

10.
Aims:  To assess the frequency of erythromycin- and tetracycline-resistant lactobacilli in Italian fermented dry sausages.
Methods and Results:  We isolated lactobacilli colonies from 20 salami from the north of Italy (Piacenza province) using selective medium supplemented with erythromycin or tetracycline; we determined the minimum inhibitory concentration and searched for selected erythromycin and tetracycline resistance genes. A total of 312 lactobacilli colonies were genetically ascribed to 60 different strains belonging to seven Lactobacillus species. Lactobacillus sakei , Lactobacillus curvatus and Lactobacillus plantarum were the most frequently found species. Thirty strains (50%) were phenotypically resistant to erythromycin, 45 (75%) to tetracycline and 27 (45%) were resistant to both. The most frequently detected resistance genes were tet (M) and erm (B).
Conclusions:  This study provides evidence of the presence of tetracycline- and, to a lesser extent, erythromycin-resistant lactobacilli in fermented dry sausages produced in northern Italy.
Significance and Impact of the Study:  Although these antibiotic-resistant lactobacilli could serve as reservoir organisms, in our study, 16 of 20 salami could be considered safe in regard to possible antibiotic resistance gene transfer to pathogens, whereas 4 of 20 could represent a borderline situation.  相似文献   

11.
The presence of tetracycline resistance (Tc(r)) genes and class I integrons (in-1), and their ability to cotransfer were investigated in Tc(r) gram-negative (185 strains) and gram-positive (72 strains) bacteria from Danish farmland and pigsties. The isolates belonged to the groups or species Escherichia coli, Enterobacter spp., Arthrobacter spp., Alcaligenes spp., Pseudomonas spp., and Corynebacterium glutamicum. The 257 isolates were screened for in-1. Eighty-one of the gram-negative isolates were also screened for the Tc(r) genes tet(A), tet(B), and tet(C), and all (n = 72) gram-positive isolates were screened for tet(33). Fourteen (7%) of the soil isolates and eleven (25%) of the pigsty isolates contained in-1. All isolates that contained tet genes also contained in-1, except one gram-negative isolate from a pigsty that contained tet(B). All gram-positive isolates with in-1 also contained tet(33). No isolates contained more than one tet gene. The in-1-positive isolates were tested for resistance to selected antimicrobial agents and showed resistance to three to nine drugs. Filter-mating experiments showed cotransfer of Tc(r) and class I integrons from soil isolates to Escherichia coli and/or Pseudomonas putida. We conclude that soil bacteria in close contact to manure or pigsty environment may thus have an important role in horizontal spread of resistance. Use of tetracyclines in food animal production may increase not only Tc(r) but also multidrug resistance (caused by the presence tet genes and in-1) in bacteria.  相似文献   

12.
Of 24 tetracycline(Tc)-resistant Vibrio spp. isolated from different marine sources in Korea between 1993 and 2003, 23 were identified as carrying both tet(B) and tet(M), while 1 strain carried tet(B) only. In conjugation experiments, 3 strains appeared to be able to transfer both tet(B) and tet(M) to the recipient. Both discriminatory PCR and sequence analysis showed that tet(M) genes of Vibrio spp. appear to be a single allele containing a specific region of tet(M) in Tn1545. However, erm(B) and aphA3, known to be linked to Tn1545-like genes, were not detected in Tc-resistant Vibrio spp., even in 9 strains resistant to erythromycin. In analysis to examine the relative position of tet(B) and tet(M), it was shown that tet(M) was present at the 3'-end of the insertion sequence IS10 of Tn10 carrying tet(B). At the junctional region between Tn10 and tet(M), we found a 14 bp sequence of unknown function and the deletion of regulatory sequences reported to be needed for tet(M) expression in conjugative transposons. This is the first report of the simultaneous presence of tet(B) and tet(M), and of the tet(M) gene being linked to the 3'-end of Tn10 in Tc-resistant Vibrio spp. in Korea.  相似文献   

13.
Three different fluorescence spectra were recorded following excitation at 250 nm (aromatic amino acids+nucleic acids, AAA+NA), 316 nm (NADH) and 380 nm (FAD) for 20 type strain collections of lactic acid bacteria (LAB). Evaluation of the data using principal component analysis and factorial discriminant analysis showed a good discrimination of considered LAB at the genus, species and genus-species level. AAA+NA fluorophores showed the highest percentage of good classification. From AAA+NA spectra recorded on LAB isolated from a small-scale facility producing traditional dry sausages, we succeeded to identify 28 of 29 wild strains. This method allowed us to discriminate between Lactobacillus sakei subsp. carnosus and Lactobacillus sakei subsp. sakei. Thus, intrinsic fluorescence is an economical and powerful tool for the identification of wild LAB isolated from meat and meat products.  相似文献   

14.
Atypical psychrophilic Aeromonas salmonicida isolates were obtained from farmed and wild fish in Northeastern North America. These bacteria were isolated between 1992 and 2001 and carried tetracycline resistance (Tc(r)) plasmids of approximately 58 kb. The nine isolates had plasmids which could be divided into four groups based on the specific tetracycline resistance (tet) gene carried [tet(A) or tet(B)], incompatibility of the plasmid [IncU or other], whether the plasmid carried the IS6100 sequences, the sul1 gene, coding for sulfonamide resistance, the dfrA16 gene, coding for trimethoprim resistance, and/or carried a complete Tn1721, and their ability to transfer their Tc(r) plasmids to an Escherichia coli recipient at 15 degrees C. Five of the isolates, with genetically related Tc(r) plasmids, were able to transfer their plasmids to an E. coli recipient at frequencies ranging from 5.7x10(-4) to 2.8x10(-6) per recipient. The 1992 isolate carried a genetically distinct plasmid, which transferred at a slightly higher rate. The three remaining isolates carried one of two genetically different plasmids, which were unable to transfer to an E. coli recipient. Conjugal transfer at 15 degrees C is the lowest temperature that has been documented in bacteria.  相似文献   

15.
Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment.  相似文献   

16.
The connection between farm-generated animal waste and the dissemination of antibiotic resistance in soil microbial communities, via mobile genetic elements, remains obscure. In this study, electromagnetic induction (EMI) surveying of a broiler chicken farm assisted soil sampling from a chicken-waste-impacted site and a marginally affected site. Consistent with the EMI survey, a disparity existed between the two sites with regard to soil pH, tetracycline resistance (Tc(r)) levels among culturable soil bacteria, and the incidence and prevalence of several tet and erm genes in the soils. No significant difference was observed in these aspects between the marginally affected site and several sites in a relatively pristine regional forest. When the farm was in operation, tet(L), tet(M), tet(O), erm(A), erm(B), and erm(C) genes were detected in the waste-affected soil. Two years after all waste was removed from the farm, tet(L), tet(M), tet(O), and erm(C) genes were still detected. The abundances of tet(L), tet(O), and erm(B) were measured using quantitative PCR, and the copy numbers of each were normalized to eubacterial 16S rRNA gene copy numbers. tet(L) was the most prevalent gene, whereas tet(O) was the most persistent, although all declined over the 2-year period. A mobilizable plasmid carrying tet(L) was identified in seven of 14 Tc(r) soil isolates. The plasmid's hosts were identified as species of Bhargavaea, Sporosarcina, and Bacillus. The plasmid's mobilization (mob) gene was quantified to estimate its prevalence in the soil, and the ratio of tet(L) to mob was shown to have changed from 34:1 to 1:1 over the 2-year sampling period.  相似文献   

17.
Aims: To evaluate the potential use of MALDI-TOF MS for fast and reliable classification and identification of lactic acid bacteria (LAB) from traditional fermented foods. Methods and Results: A total of 119 strains of LAB from fermented meat (nem chua) were analysed with both (GTG)(5) -PCR fingerprinting and MALDI-TOF MS. Cluster analysis of the profiles revealed five species represented by a single isolate both in (GTG)(5) -PCR and in MALDI-TOF MS; five species grouped alike for (GTG)(5) -PCR and for MALDI-TOF MS; however, differences in minimal similarity between the delineated (GTG)(5) -PCR and MALDI-TOF MS clusters could be observed; three species showed more heterogeneity in their MALDI-TOF MS profiles compared to their (GTG)(5) -PCR profiles; two species, each represented by a single MALDI-TOF cluster, were subdivided in the corresponding (GTG)(5) -PCR dendrogram. As proof of the identification potential of MALDI-TOF MS, LAB diversity from one fermented mustard sample was analysed using MALDI- TOF MS. PheS gene sequencing was used for validation. Conclusions: MALDI-TOF MS is a powerful, fast, reliable and cost-effective technique for the identification of LAB associated with the production of fermented foods. Significance and Impact of the Study: Food LAB can be identified using MALDI-TOF MS, and its application could possibly be extended to other food matrices and/or other food-derived micro-organisms.  相似文献   

18.
Danielsen M 《Plasmid》2002,48(2):98-103
The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum.  相似文献   

19.
Nawaz M  Wang J  Zhou A  Ma C  Wu X  Moore JE  Millar BC  Xu J 《Current microbiology》2011,62(3):1081-1089
The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely.  相似文献   

20.
AIM: To evaluate the biodiversity of lactobacilli from slightly fermented sausages (chorizo, fuet and salchichon) by molecular typing, while considering their safety aspects. METHODS AND RESULTS: Species-specific PCR, plasmid profiling and randomly amplified polymorphic DNA (RAPD)-PCR were used to characterize 250 lactic acid bacteria (LAB) isolated from 21 low acid Spanish fermented sausages. Lactobacillus sakei was the predominant species (74%) followed by Lactobacillus curvatus (21.2%) and Leuconostoc mesenteroides (4.8%). By plasmid profiling and RAPD-PCR 144 different strains could be differentiated, 112 belonging to Lact. sakei, 23 to Lact. curvatus and 9 to Leuc. mesenteroides. Ion-pair high performance liquid chromatography was used to detect biogenic amine production. Tyramine and phenylethylamine were produced by 14.4 and 12.4% of the isolates, respectively, all belonging to the species Lact. curvatus. The production of tyramine was stronger than that of phenylethylamine. Partial sequencing of the tyrosine decarboxylase gene from Lact. curvatus was achieved. A specific PCR assay to detect the Lact. curvatus tyramine-producers was designed. The disc diffusion test was used to detect antibiotic resistance among the isolates. Most isolates displayed resistance to vancomycin and gentamicin. Only four strains were resistant to most of the antibiotics tested. None of the isolates were resistant to erythromycin. CONCLUSIONS: Lactobacillus sakei would be the species of choice for further use as starter culture in fermented sausage production. Strain typing and characterization of biogenic amine production together with antibiotic susceptibility testing for the selection of starter cultures could help to increase the quality and safety of the products. SIGNIFICANCE AND IMPACT OF THE STUDY: Species-specific PCR, RAPD and plasmid profiling proved to be efficient at typing LAB at species and strain level. Information on biogenic amine production and transferable antibiotic resistance is important in order to avoid selection of strains with undesirable properties as starter cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号