首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consistent responses by various organisms to common environmental pressures represent strong evidence of natural selection driving geographical variation. According to Bergmann's and Allen's rules, animals from colder habitats are larger and have smaller limbs than those from warmer habitats to minimize heat loss. Although evidence supporting both rules in different organisms exists, most studies have considered only elevational or latitudinal temperature gradients. We tested for the effects of temperature associated with both elevation and latitude on body and appendage size of torrent ducks (Merganetta armata), a widespread species in Andean rivers. We found a negative relationship between body size and temperature across latitude consistent with Bergmann's rule, whereas there was a positive relationship between these variables along replicate elevational gradients at different latitudes. Limb‐size variation did not support Allen's rule along latitude, nor along elevation. High‐elevation ducks were smaller and had longer wings than those inhabiting lower elevations within a river. We hypothesize that temperature is likely a major selective pressure acting on morphology across latitudes, although hypoxia or air density may be more important along elevational gradients. We conclude that the effect of temperature on morphology, and hence the likelihood of documenting ecogeographical ‘rules’, depends on the environmental context in which temperature variation is examined. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 850–862.  相似文献   

2.
1. In most birds and mammals, larger individuals of the same species tend to be found at higher latitudes, but in insects, body size–latitude relationships are highly variable. 2. Recent studies have shown that larger‐bodied insect species are more likely to decrease in size when reared at increased temperature, compared with smaller‐sized species. These findings have led to the prediction that a positive relationship between body size and latitude should be more prevalent in larger‐bodied insect species. 3. This study measured the body size of > 4000 beetle specimens (12 species) collected throughout North America. Some beetle species increased in size with latitude, while others decreased. Importantly, mean species body size explained c. 30% of the interspecific variation in the size–latitude response. 4. As predicted, larger‐bodied beetle species were more likely to show a positive relationship between body size and latitude (Bergmann's rule), and smaller‐bodied species were more likely to show a negative body size–latitude relationship (inverse Bergmann's rule). 5. These body size–latitude patterns suggest that size‐specific responses to temperature may underlie global latitudinal distributions of body size in Coleoptera, as well as other insects.  相似文献   

3.
Bergmann's rule originally described a positive relationship between body size and latitude in warm‐blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology.  相似文献   

4.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

5.
The most studied ecogeographic rule is Bergmann's rule, but aspects of the original paper are often presented incorrectly even though Bergmann (1847) is explicitly cited. The goal of this paper is to 1) summarize the contents of Bergmann's paper, supported by direct translations, and 2) to discuss the main issues surrounding Bergmann's rule based on Bergmann's intentions and early definitions of the rule. Although Bergmann himself never formulated an explicit rule, based on Bergmann's (1847) intentions and early definitions of Bergmann's rule, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Bergmann (1847) assumed that the surface area of an animal is a measure for heat dissipation and an animal's volume a measure of its heat production. As body size increases, an animal's surface area increases less than its volume; however, modifications in morphology and behaviour will also influence the temperature budget. Bergmann hypothesized that when everything but size is equal, the smaller animals should live in warmer areas. This was supported by empirical data on > 300 bird species belonging to 86 genera. Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) but to any taxonomic group, 4) tests of the rule should test the assumption that larger animals have to produce less heat to increase body temperatures, and 5) future authors should either go back to the original publication (Bergmann 1847) when referring to it or simply not cite it at all. Synthesis Based on Bergmann's (1847) intentions and early definitions, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) and to any taxonomic group, 4) tests of the rule should examine whether larger animals have to produce less heat to increase body temperatures, and 5) authors should go back to the original publication (Bergmann 1847) when referring to it.  相似文献   

6.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

7.
Aim The aim of this study is to test whether Bergmann's rule, a general intraspecific tendency towards larger body size in cooler areas and at higher latitudes, holds for birds throughout the world. Location This study includes information on species of birds from throughout the world. Methods I gathered data on body size variation from the literature and used two general meta‐analytical procedures to test the validity of Bergmann's rule in birds: a modified vote‐counting approach and calculation of overall effect sizes. Related species may show similar body size trends, thus I performed all analyses using nonphylogenetic and phylogenetic methods. I used tests of phylogenetic signal for each data set to decide which type of statistical analysis (nonphylogenetic or phylogenetic) was more appropriate. Results The majority of species of birds (76 of 100 species) are larger at higher latitudes, and in cooler areas (20 of 22 species). Birds show a grand mean correlation coefficient of +0.32 for body size and latitude, and ?0.81 for body size and temperature, both significant trends. Sedentary species show stronger body size trends in some, but not all, analyses. Neither males nor females consistently have stronger body size trends. Additionally, the strength of body size trends does not vary with latitude or body mass. Conclusions Bergmann's rule holds for birds throughout the world, regardless of whether temperature or latitude (as a proxy) is used. Previous studies have suggested that Bergmann's rule is stronger for sedentary than migratory species, males than females and temperate than tropical taxa. I did not find strong support for any of these as general themes for birds, although few studies of tropical taxa have been conducted. The processes responsible for Bergmann's rule remain somewhat of a black box; however, fasting endurance is probably a more important factor than the traditional hypothesis of heat conservation.  相似文献   

8.
Adaptive divergence in response to variable habitats, climates, and altitude is often accentuated along elevation gradients. We investigate phenotypic evolution in body size and coloration in the western fence lizard (Sceloporus occidentalis Baird & Girard, 1852) across elevation gradients in Yosemite National Park, California, situated in the Sierra Nevada mountains of Western North America. High‐elevation populations occurring above 2100 m a.s.l. are recognized as a separate subspecies (Sceloporus occidentalis taylori Camp, 1916), with a distinctive phenotype characterized by a large body size and extensive blue ventral pigmentation. We sampled S. occidentalis from across elevation gradients in Yosemite National Park, California, and collected phenotypic data (body size and ventral coloration measurements; 410 specimens) and mitochondrial DNA sequence data (complete NADH1 gene; 969 bp, 181 specimens) to infer phylogenetic relationships, and examine the genetic and phenotypic diversity among populations. Populations of S. occidentalis in Yosemite National Park follow Bergmann's rule and exhibit larger body sizes in colder, high‐elevation environments. The high‐elevation subspecies S. o. taylori is not monophyletic, and the mitochondrial DNA genealogy supports a model of convergent phenotypic evolution among high‐elevation populations belonging to different river drainages. The hypothesis that separate populations of S. occidentalis expanded up river drainages after the recession of glaciers is supported by population demographic analyses, and suggest that Bergmann's clines can evolve rapidly along elevation gradients. The distinctive high‐elevation phenotype that is attributable to S. o. taylori has evolved independently several times, and includes adaptive phenotypic changes associated with increases in body size and ventral coloration. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 630–641.  相似文献   

9.
Body size latitudinal clines have been widley explained by the Bergmann's rule in homeothermic vertebrates. However, there is no general consensus in poikilotherms organisms in particular in insects that represent the large majority of wildlife. Among them, bees are a highly diverse pollinators group with high economic and ecological value. Nevertheless, no comprehensive studies of species assemblages at a phylogenetically larger scale have been carried out even if they could identify the traits and the ecological conditions that generate different patterns of latitudinal size variation. We aimed to test Bergmann's rule for wild bees by assessing relationships between body size and latitude at continental and community levels. We tested our hypotheses for bees showing different life history traits (i.e. sociality and nesting behaviour). We used 142 008 distribution records of 615 bee species at 50 × 50 km (CGRS) grids across the West Palearctic. We then applied generalized least squares fitted linear model (GLS) to assess the relationship between latitude and mean body size of bees, taking into account spatial autocorrelation. For all bee species grouped, mean body size increased with higher latitudes, and so followed Bergmann's rule. However, considering bee genera separately, four genera were consistent with Bergmann's rule, while three showed a converse trend, and three showed no significant cline. All life history traits used here (i.e. solitary, social and parasitic behaviour; ground and stem nesting behaviour) displayed a Bergmann's cline. In general there is a main trend for larger bees in colder habitats, which is likely to be related to their thermoregulatory abilities and partial endothermy, even if a ‘season length effect’ (i.e. shorter foraging season) is a potential driver of the converse Bergmann's cline particularly in bumblebees.  相似文献   

10.
Aim To test the abundant centre hypothesis by analysing the physical and climatic factors that influence body size variation in the European badger (Meles meles). Location Data were compiled from 35 locations across Europe. Methods We used body mass, body length and condylo‐basal length (CBL) as surrogates of size. We also compiled data on latitude, several climatic variables, habitat type and site position relative to the range edge. We collapsed all continuous climatic variables into independent vectors using principal components analysis (PCA), and used a general linear model to explain the morphometric variation in badger populations across the species’ range. Results Body mass and body length were nonlinearly and significantly related to latitude. In contrast, CBL was linearly related to latitude. Body mass changed nonlinearly along the temperature (PC1) gradient, with the highest values observed at mid‐range. Furthermore, body mass, body length and CBL differed significantly among habitats, with badgers showing larger size in temperate habitats and core areas relative to peripheral zones. Main conclusions Our analysis supports the nonlinear pattern predicted by the abundant centre hypothesis only for body mass and body length. These results imply that individuals are largest and heaviest at the centre of the climatic range of badger distribution. Variation of CBL with latitude follows a linear trend, consistent with Bergmann’s rule. Our results provide mixed support for the abundant centre hypothesis, and suggest food availability/quality to be the main mechanism underlying body size clines in this species.  相似文献   

11.
Bergmann's rule states that endotherms have a large body size in high latitudes and cold climates. However, previous empirical studies have reported mixed evidence on the relationships between body size and latitude, raising the question of why some clades of endotherms follow Bergmann's rule, whereas others do not. Here, we synthesized the interspecific relationships between body size and latitude among 16,187 endothermic species (5422 mammals and 10,765 birds) using Bayesian phylogenetic generalized linear mixed models to examine the strength and magnitude of Bergmann's rule. We further assessed the effect of biological and ecological factors (i.e., body mass categories, dietary guild, winter activity, habitat openness, and climate zone) on the variations in the body mass–latitude relationships by adding an interaction term in the models. Our results revealed a generally weak but significant adherence to Bergmann's rule among all endotherms at the global scale. Despite taxonomic variation in the strength of Bergmann's rule, the body mass of species within most animal orders showed an increasing trend toward high latitudes. Generally, large-bodied, temperate species, non-hibernating mammals, and migratory and open-habitat birds tend to conform to Bergmann's rule more than their relatives do. Our results suggest that whether Bergmann's rule applies to a particular taxon is mediated by not only geographic and biological features, but also potential alternate strategies that species might have for thermoregulation. Future studies could explore the potential of integrating comprehensive trait data into phylogenetic comparative analysis to re-assess the classic ecogeographic rules on a global scale.  相似文献   

12.
There is a negative relationship between trunk segment number and latitude among geophilomorph centipedes in general. A similar relationship is known to exist within the most intensively‐studied geophilomorph species, Strigamia maritima, and also within several other species from this group. Previously, it was considered that this relationship did not involve body length; instead, individuals of S. maritima with more segments were considered to be more finely subdivided (not longer) than those with fewer segments. This incorrect interpretation arose from the difficulty of reliably separating post‐embryonic stages and thus of making a simple and direct comparison. In the present study, we build on recent work that facilitates such comparisons; and we show conclusively that individuals with more segments are longer. Our finding means that it is now possible to connect the work on S. maritima in particular, and on geophilomorph centipedes in general, with the debate about Bergmann's ‘rule’: the proposal that body size increases with increasing latitude. There is a clear ‘converse‐Bergmann’ pattern, as has been found in several other taxa. We propose an adaptive hypothesis that may explain why geophilomorphs show this pattern. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13‐ and 17‐year species in each group, 13‐year cicadas were equal in size or slightly smaller on average than their 17‐year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17‐year cicadas have lowered growth rates compared to their 13‐years counterparts, allowing 13‐year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17‐year counterparts at the same locations. However, in the Decim group, which includes two 13‐year species, the more southerly, anciently diverged 13‐year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13‐ and 17‐year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles.  相似文献   

14.
Aim Bergmann's rule generally predicts larger animal body sizes with colder climates. We tested whether Bergmann's rule at the interspecific level applies to moths (Lepidoptera: Geometridae) along an extended elevational gradient in the Ecuadorian Andes. Location Moths were sampled at 22 sites in the province Zamora‐Chinchipe in southern Ecuador in forest habitats ranging from 1040 m to 2677 m above sea level. Methods Wingspans of 2282 male geometrid moths representing 953 species were measured and analysed at the level of the family Geometridae, as well as for the subfamily Ennominae with the tribes Boarmiini and Ourapterygini, and the subfamily Larentiinae with the genera Eois, Eupithecia and Psaliodes. Results Bergmann's rule was not supported since the average wingspan of geometrid moths was negatively correlated with altitude (r = ?0.59, P < 0.005). The relationship between body size and altitude in Geometridae appears to be spurious because species of the subfamily Larentiinae are significantly smaller than species of the subfamily Ennominae and simultaneously increase in their proportion along the gradient. A significant decrease of wingspan was also found in the ennomine tribe Ourapterygini, but no consistent body size patterns were found in the other six taxa studied. In most taxa, body size variation increases with altitude, suggesting that factors acting to constrain body size might be weaker at high elevations. Main conclusions The results are in accordance with previous studies that could not detect consistent body size patterns in insects at the interspecific level along climatic gradients.  相似文献   

15.
1. Bergmann's rule sensu lato, the ecogeographic pattern relating animals' body size with environmental temperature (or latitude), has been shown to be inconsistent among insect taxa. Body size clines remain largely unexplored in aquatic insects, which may show contrasting patterns to those found in terrestrial groups because of the physiological or mechanical constraints of the aquatic environment. 2. Bergmann's rule was tested using data on body size, phylogeny and distribution for 93 species belonging to four lineages of dytiscid water beetles. The relationship between size and latitude was explored at two taxonomic resolutions – within each independent lineage, and for the whole dataset – employing phylogenetic generalised least‐squares to control for phylogenetic inertia. The potential influence of habitat preference (lotic versus lentic) on body size clines was also considered. 3. Within‐lineage analyses showed negative relationships (i.e. converse Bergmann's rule), but only in two lineages (specifically in those that included both lotic and lentic species). By contrast, no relationship was found between body size and latitude for the whole dataset. 4. These results suggest that there may be no universal interspecific trends in latitudinal variation of body size in aquatic insects, even among closely related groups, and show the need to account for phylogenetic inertia. Furthermore, habitat preferences should be considered when exploring latitudinal clines in body size in aquatic taxa at the interspecific level.  相似文献   

16.
Bergmann's rule predicts that organisms at higher latitudes are larger than ones at lower latitudes. Here, we examine the body size pattern of the Atlantic marsh fiddler crab, Minuca pugnax (formerly Uca pugnax), from salt marshes on the east coast of the United States across 12 degrees of latitude. We found that M. pugnax followed Bergmann's rule and that, on average, crab carapace width increased by 0.5 mm per degree of latitude. Minuca pugnax body size also followed the temperature–size rule with body size inversely related to mean water temperature. Because an organism's size influences its impact on an ecosystem, and M. pugnax is an ecosystem engineer that affects marsh functioning, the larger crabs at higher latitudes may have greater per‐capita impacts on salt marshes than the smaller crabs at lower latitudes.  相似文献   

17.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

18.
Bergmann's Rule predicts larger body sizes in colder habitats, increasing organisms' ability to conserve heat. Originally formulated for endotherms, it is controversial whether Bergmann's Rule may be applicable to ectotherms, given that larger ectotherms show diminished capacity for heating up. We predict that Bergmann's Rule will be applicable to ectotherms when the benefits of a higher conservation of heat due to a larger body size overcompensate for decreased capacity to heating up. We test this hypothesis in the lizard Psammodromus algirus, which shows increased body size with elevation in Sierra Nevada (SE Spain). We measured heating and cooling rates of lizards from different elevations (from 300 to 2500 m above sea level) under controlled conditions. We found no significant differences in the heating rate along an elevational gradient. However, the cooling rate diminished with elevation and body size: highland lizards, with larger masses, have a higher thermal inertia for cooling, which allows them to maintain heat for more time and keep a high body temperature despite the lower thermal availability. Consequently, the net gaining of heat increased with elevation and body size. This study highlights that the heat conservation mechanism for explaining Bergmann's Rule works and is applicable to ectotherms, depending on the thermal benefits and costs associated with larger body sizes.  相似文献   

19.
The widespread and complex ecogeographical diversity of macaques may have caused adaptive morphological convergence among four phylogenetic subgroups, making their phylogenetic relationships unclear. We used geometric morphometrics and multivariate analyses to test the null hypothesis that craniofacial morphology does not vary with ecogeographical and phylogenetic factors. As predicted by Bergmann's rule, size was larger for the fascicularis and sinica groups in colder environments. No clear size cline was observed in the silenus and sylvanus groups. An allometric pattern was observed across macaques, indicating that as size increases, rounded faces become more elongated. However, the elevation was differentiated within each of the former two groups and between the silenus and sylvanus groups, and the slope decreased in each of the two northern species of the fascicularis group. All allometric changes resulted in the similar situation of the face being more rounded in animals inhabiting colder zones and/or in animals having a larger body size than that predicted from the overarching allometric pattern. For non‐allometric components, variations in prognathism were significantly correlated with dietary differences; variations in localized shape components in zygomatics and muzzles were significantly correlated with phylogenetic differences among the subgroups. The common allometric pattern was probably influenced directly or indirectly by climate‐related factors, which are pressures favoring a more rounded face in colder environments and/or a more elongated face in warmer environments. Allometric dissociation could have occurred several times in Macaca even within a subgroup because of their wide latitudinal distributions, critically impairing the taxonomic utility of craniofacial elongation. Am J Phys Anthropol 154:27–41, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Members of the spider genus Amaurobioides are restricted to the spray zone of rocky marine coasts, where they construct and hunt from silk retreats. Collecting for this study shows these spiders to be distributed around the entire New Zealand coast. A Templeton, Crandall, and Sing (TCS) analysis of the ND1 mitochondrial gene places specimens from the North Island and the northern half of the South Island into a group distinct from Amaurobioides maritima O.P.‐Cambridge, 1883, which is restricted to the southern half of the South Island. Females of this northern group exhibit latitude‐ and temperature‐related clines in body length, body mass, and residual index of condition, with larger individuals with greater indices of condition being found at cooler, southern sites. This size cline also appeared in a broader geographical analysis that included Amaurobioides piscator Hogg, 1909 from the sub‐Antarctic Auckland and Campbell Islands. Thirteen ND1 haplotypes are represented in the northern group. Both independent contrast analyses and standard regressions of the mean body lengths and mean masses of these haplotypes, and the mean latitudes and temperatures of the sites where haplotypes were present, document a Bergmann's size cline, and provide evidence for an underlying genetic component. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 78–92.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号