首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  完全免费   10篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有59条查询结果,搜索用时 218 毫秒
1.
Complex distribution patterns of species-rich insect communities in tropical rainforests have been intensively studied, and yet we know very little about processes that generate these patterns. We provide evidence for the key role of homopteran honeydew and plant nectar in structuring ant communities in an Australian tropical rainforest canopy and understorey. We also test the ant visitation of these resources against predictions derived from the 'ant-mosaic' hypothesis. Two ant species were highly dominant in terms of territorial behaviour and abundance: Oecophylla smaragdina and Anonychomyrma gilberti . Both dominant ant species monopolised large aggregations of honeydew-producing homopterans. Attended homopteran species were highly segregated between these two ant species. For the use of extrafloral and floral nectar (involving 43 ant species on 48 plant species), partitioning of ant species among plant species and between canopy and understorey was also significant, but less pronounced. In contrast to trophobioses, simultaneous co-occurrence of different nectar foraging ant species on the same plant individuals was frequent (23% of all surveys). While both dominant ant species were mutually exclusive on honeydew and nectar sources, co-occurrence with non-dominant ant species on nectaries was common. The proportion of visits with co-occurrences was low for dominant ants and high for many sub-ordinate species. These findings support the ant mosaic theory. The differential role of honeydew (as a specialised resource for dominant ants) and nectar (as an opportunistic resource for all ants including the co-occurring non-dominant species) provides a plausible structuring mechanism for the Australian canopy ant community studied.  相似文献
2.
3.
4.
5.
In ectotherms, temperature induces similar developmental and evolutionary responses in body size, with larger individuals occurring or evolving in low temperature environments. Based on the occasional occurrence of opposite size clines, showing a decline in body size with increasing latitude, an interaction between generation time and growing season length was suggested to account for the patterns found. Accordingly, multivoltine species with short generation times should gain high compound interest benefits from reproducing early at high temperatures, indicating potential for extra generations, even at the expense of being smaller. This should not apply for obligatorily monovoltine populations. We explicitly test the prediction that monovoltine populations (no compound interest) should be selected for large body size to maximise adult fitness, and therefore size at maturity should respond only weakly to temperature. In two monovoltine populations (an Alpine and a Western German one) of the butterfly Lycaena hippothoe, increasing temperatures had no significant effect on pupal weight and caused a slight decrease in adult weight only. In contrast, two closely related, yet potentially multivoltine Lycaena populations showed a greater weight loss at increasing temperature (in protandrous males, but not in females) and smaller adult sizes throughout. Thus, the results do support our predictions indicating that the compound interest hypothesis may yield causal explanations for the relationship between temperature and insect size at maturity. At all temperatures, the alpine population had higher growth rates and concomitantly shorter development times (not accompanied by a reduction in size) than the other, presumably indicating local adaptations to different climates.  相似文献
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号