首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

2.
It is still unclear to what extent variations in foliar δ13C and nitrogen can be used to detect seasonal changes in canopy productivity. We hypothesize that in a wet and cloudy fir forest, seasonally higher litterfall and lower leaf area index (LAI) are correlated with higher mass-based leaf nitrogen (N mass) and net primary productivity (NPP), while foliar δ13C may change with specific leaf area (SLA), area-based leaf nitrogen (N area), and/or starch concentration. In order to test our hypotheses, stand-level litterfall and the means of δ13C, N mass, N area, SLA, and starch concentration of canopy needles for a wet and cloudy Abies fabri forest in the Gongga Mountains were monthly measured during the growing season. Seasonal estimates of LAI were obtained from our previous work. A conceptual model was used to predict seasonal NPP of the fir forest. Seasonal mean δ13C and N mass and climatic variables were used as inputs. The δ13C across 1–7-year-old needles increased from May to September associated with decreasing SLA and increasing N area. There were no significant differences in seasonal starch concentration. With increasing litterfall and decreasing LAI, seasonal mean N mass increased, while the δ13C varied little. The simulated NPP increased with increasing litterfall and related traits of N mass and N area. Our data generally supported the hypotheses. The results also suggest that in the forest with relatively moist and cloudy environment, the largest fraction of annual carbon gain may occur in the early part of the growing season when higher litterfall results in higher N mass of canopy leaves.  相似文献   

3.
Question: Is there any generality in terms of leaf trait correlations and the multiple role of leaf traits (response to and/or effect on) during secondary succession? Location: A secondary successional sere was sampled at four different ages since abandonment from several years to nearly 150 years on the Loess Plateau of northwestern China. Method: Specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen (Nmass, Narea), leaf phosphorus (Pmass, Parea) and leaf dry matter content (LDMC) were measured for all species recorded in the successional sere. Above‐ground net primary productivity (ANPP) and specific rate of litter mass loss (SRLML) were measured as surrogates for ecosystem properties. Soil total carbon (C) and nitrogen (N) were measured in each stage. Leaf traits were related to ecosystem properties and soil nutrient gradients, respectively. Results: LMA is correlated with Narea and Parea' and negatively with Nmass. Correlation between Narea and Parea was higher than between Nmass and Pmass. At the community level, field age, community hierarchy and their interaction explain 64.4 ‐ 93.5% of the variation in leaf traits. At the species level, field age explains 22.4 ‐ 45.5% of the variation in leaf traits (excl. Parea) while plant functional group has a significant effect only for Nmass. LDMC is correlated with ANPP and negatively with SRLML; Pmass is correlated with SRLML. Conclusions: Mean values of LMA, Nmass and Narea are close to the worldwide means, suggesting that large‐scale climate has a profound effect on leaf mass and leaf nitrogen allocation, while environmental gradients represented by succession have little influence on leaf‐trait values. Correlations between leaf traits, such as LMA‐Narea, LMA‐Parea and LMA‐Nmass shown in previous studies, are confirmed here. Although none of the leaf traits is proved to be both a response trait and an effect trait independent of time scale and community hierarchy, mass‐based leaf N is likely a sensitive response trait to soil C and N gradients. In addition, LDMC can be a marker for ANPP and SRLML, while mass‐based leaf P can be a marker for SRLML.  相似文献   

4.
魏海霞  霍艳玲  周忠科  张治国 《生态学报》2022,42(20):8343-8351
叶功能性状与植物的生长对策及资源利用效率密切相关,研究叶功能性状沿气候梯度的变异特征能为理解植物对气候变化的响应机制提供一种简便可行的测定指标。以我国西北荒漠地区广泛分布的唐古特白刺(Nitraria tangutorum)为研究对象,对其比叶面积(SLA)、单位质量和单位面积叶氮含量(Nmass、Narea)、单位质量和单位面积叶建成成本(CCmass、CCarea)进行测定,分析这些叶功能性状及性状相关关系沿气候梯度的变异特征。结果表明,唐古特白刺叶功能性状(CCarea除外)在气候梯度下存在显著差异,其中,温度是决定唐古特白刺SLA变化的主要因子,SLA随着温度的增加而增加;降水和温度对唐古特白刺Nmass、Narea和CCmass均有显著影响,Nmass和Narea随着降水和温度的增加而降低,而CCmass呈增加趋势。沿气候梯度,唐古特白刺SLA-Nmass、CCmass-Nmass和CCarea-Narea的线性正相关关系发生平移,导致在相同SLA、CCmass和CCarea下,降水和温度较低的地区具有更高的Nmass和Narea。这一结果表明唐古特白刺能通过调节叶功能性状之间的关系来适应气候的变化,并形成性状间的最佳功能组合。  相似文献   

5.
Luo T  Luo J  Pan Y 《Oecologia》2005,142(2):261-273
Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species and the associated stand foliage N-pool, leaf area index (LAI), root biomass, aboveground biomass, net primary productivity (NPP) and soil available-N content in six undisturbed forest plots along subtropical to timberline gradients on the eastern slope of the Gongga Mountains. We developed a methodology to calculate the whole-canopy mean leaf traits to include all tree species (groups) in each of the six plots through a series of weighted averages scaled up from leaf-level measurements. These defined whole-canopy mean leaf traits were equivalent to the traits of a leaf in regard to their interrelationships and altitudinal trends, but were more useful for large-scale pattern analysis of ecosystem structure and function. The whole-canopy mean leaf lifespan and leaf Nmass mainly showed significant relationships with stand foliage N-pool, NPP, LAI and root biomass. In general, as elevation increased, the whole-canopy mean leaf lifespan and leaf Narea and stand LAI and foliage N-pool increased to their maximum, whereas the whole-canopy mean SLA and leaf Nmass and stand NPP and root biomass decreased from their maximum. The whole-canopy mean leaf lifespan and stand foliage N-pool both converged towards threshold-like logistic relationships with annual mean temperature and soil available-N variables. Our results are further supported by additional literature data in the Americas and eastern China.  相似文献   

6.
Few studies have examined leaf-trait relationships in the distribution of individual species along an environmental gradient. Here we address the issue by testing for the leaf-trait relationships of Quercus liaotungensis, a dominant deciduous woody species in northern China, along an altitudinal gradient in Dongling Mountain, Beijing. These leaf traits included specific leaf area (SLA), leaf dry matter content (LDMC), and leaf nitrogen, phosphorus, and potassium concentration on mass basis (Nmass, Pmass and Kmass, respectively). Along the altitudinal gradient, negative relationships between SLA and LDMC and Nmass were found, and Nmass, Pmass and Kmass correlated with each other positively. Relationship between Nmass and Pmass was stronger than the ones between Nmass and Kmass, and between Pmass and Kmass. The weak and negative relationship between SLA and Nmass might result from trade-offs that limit photosynthesis and water use efficiency along the altitudinal gradient, suggesting many environmental factors of local site being the collective forcing of drivers. Out of our expectations, Nmass and Pmass related very weakly to soil N and P, and no significant relationship between Kmass and soil K was found along elevation. These relationships could be used to predict the productivity of the population with changing environment in this region.  相似文献   

7.
To understand the ecophysiological adaptation mechanisms of Calligonum roborovskii to altitude variation, this study analyzed chlorophyll a (Chl a), chlorophyll b (Chl b), Chl (a + b), carotenoid (Car), malondialdehyde (MDA), ascorbate (AsA), proline (Pro), membrane permeability (MP), reactive oxygen species (ROS), specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen content based on mass (Nmass), and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in leaves of plants inhabiting different altitudes (A1: 2100 m, A2: 2350 m, A3: 2600 m) on the northern slope of the Kunlun Mountains. The results showed that Chl a, Chl b, Chl (a + b), SLA, Nmass, and the activity of CAT increased with increasing altitude. LMA, MP, MDA, Car, Pro, AsA, O2, H2O2 and the activities of SOD, POD, and APX decreased with increasing altitude. The test results also showed that, changes in venvironmental factors along an altitudinal gradient are not obvious. Soil water content is the main ecological factor. With increasing altitude, soil water content increased significantly. More non-enzymatic and enzymatic antioxidants played an important role in eliminating intracellular ROS. They kept the cell membrane in a stable state and ensured the normal growth of C. roborovskii.  相似文献   

8.
以漓江水陆交错带为研究区,分两个条带分别量测了适生植物的5个叶性状指标:最大净光合速率(A_(max))、比叶重(LMA)、单位质量叶片全氮含量(N_(mass))、单位质量叶片全磷含量(P_(mass))、单位质量叶片全钾含量(K_(mass))。研究重度淹没带与微度淹没带不同功能型植物叶性状间的差异,分析并讨论重度淹没带叶性状间的关系与全球尺度是否存在差异,探究重度淹没带植物对水淹生境的生理响应机制。结果如下:(1)重度淹没带植物叶片的A_(mass)、N_(mass)、P_(mass)显著高于微度淹没带。(2)乔木、灌木叶片的LMA均显著高于草本植物,而A_(mass)、PPUE均显著低于草本植物。(3)重度淹没带草本叶性状指标的N_(mass)、P_(mass)、PNUE均显著高于微度微度淹没带,而乔木、灌木的叶性状在两个条带的差异则不显著。(4)重度淹没带植物叶性状关系与全球尺度基本一致,其植物叶片具有低LMA,高A_(mass)、Nmas s、P_(mass)。分析可知,重度淹没带植物在出露期提高叶片光合效率及相关营养水平可能是其适应水淹胁迫特殊生境的关键策略之一;不同功能型植物对同一环境的适应能力存在一定的差异,草本对于水淹环境的响应更为积极,适应能力更好;重度淹没带也存在叶经济谱,其植物在经济谱中属于"快速投资-收益"型物种。  相似文献   

9.
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost–benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar 15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.  相似文献   

10.
西藏紫花针茅叶功能性状沿降水梯度的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象, 沿降水梯度(69-479 mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位重量和单位面积叶氮含量(Nmass, Narea)、叶密度和厚度等叶功能性状以及土壤全氮含量等因子, 试图验证干旱胁迫地区同一物种内SLA-Nmass关系沿降水梯度的策略位移现象是否具有普遍性, 并对是否出现策略位移现象提出可能的解释。研究结果表明: 1) SLANmass与生长季温度和降水以及土壤全氮含量均没有显著关系, SLANmass的关系在干旱半干旱区(年降水/蒸发比< 0.11)与半湿润区(年降水/蒸发比> 0.11)之间并没有出现典型的位移现象; 2)叶密度是决定半湿润区SLA变化的主导因子, 而叶厚度则是干旱半干旱区SLA变化的控制因子, 两者与SLA均呈负相关, 随着温度增加或降水减少, 叶厚度增加而叶密度降低, 导致SLA随温度和降水变化不明显; 3)半湿润区的叶密度增加引起Narea增加, 而干旱半干旱区的叶厚度增加并没有造成Narea的显著变化, 导致Narea沿降水梯度没有显著变化; 4)紫花针茅地上生物量与Narea具有显著正相关关系, 表明Narea的增加有助于提高植被生产力。结果表明, 在干旱胁迫下, 植物通过增加叶厚度来维持不变的Narea可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变, 这为进一步检测高寒草地植被的水分限制阈值提供了新思路。  相似文献   

11.
C. H. Lusk  P. B. Reich 《Oecologia》2000,123(3):318-329
It has been argued that plants adapted to low light should have lower carbon losses via dark respiration (Rd) than those not so adapted, and similarly, all species would be expected to down-regulate Rd in deep shade, because the associated advantages of high metabolic potential cannot be realized in such habitats. In order to test these hypotheses, and to explore the determinants of intraspecific variation in respiration rates, we measured Rd, leaf mass per unit area (LMA), and nitrogen content of mature foliage in juveniles of 11 cold-temperate tree species (angiosperms and conifers), growing in diverse light environments in forest understories in northern Minnesota. Among the seven angiosperm species, respiration on mass, area, and nitrogen bases showed significant negative overall relationships with shade tolerance level. Mass-based respiration rates (Rd mass) of angiosperms as a group showed a significant positive overall relationship with an index of light availability (percentage canopy openness, %CO). Rd mass of most conifers also showed evidence of acclimation of Rd mass to light availability. LMA of all species also increased with increasing %CO, but this response was generally much stronger in angiosperms than in conifers. As a result, the response of area-based respiration (Rd area) to %CO was dominated by ΔRd mass for conifers, and by ΔLMA for most angiosperms, i.e., functional types differed in the components of acclimation of Rd area to light availability. Among the seven angiosperm species, the relationships of leaf N on a mass basis (N mass) with %CO were modulated by shade tolerance: negative slopes in shade-tolerant species may be related to the steep increases in LMA of these taxa along gradients of increasing light intensity, and associated dilution of N-rich, metabolically active tissue by increasing investment in leaf structural components. Although N mass was therefore an unreliable predictor of variation in Rd mass along light gradients, respiration per unit leaf N (Rd/N) was significantly positively correlated with %CO for most species. This probably reflects variation in the proportion of leaf N allocated to protein and/or the influence of leaf carbohydrate status on Rd. Species shade tolerance differences were not significantly correlated with the magnitude of either ΔRd mass or ΔRd area, indicating that variation in acclimation potential of Rd is much less important than inherent differences in this trait. Acclimation of Rd mass to light availability appears to be a generalized feature of juvenile trees, and the important ecological trade-off is likely between high metabolic capacity in high light and low respiratory losses in low light. Received: 15 April 1999 / Accepted: 24 October 1999  相似文献   

12.
We studied the effects of photon flux density (PFD) and leaf position, a measure of developmental age, on the distribution of nitrogen content per unit leaf area (N area) in plants of different heights, in dense stands grown at two nitrogen availabilities and in solitary plants of the erect dicotyledonous herb Xanthium canadense. Taller more dominant plants received higher PFD levels and experienced a larger difference in relative PFD between their youngest and oldest leaves than shorter subordinate plants in the stands. Differences in PFD between leaves of solitary plants were assumed to be minimal and differences in leaf traits, found for these plants, could thus be mainly attributed to an effect of leaf position. In the solitary plants, N area decreased with leaf position while in the plants from the stands it decreased with decreasing relative PFD, indicating both factors to be important in determining the distribution of N area. Due to the effect of leaf position on N area, leaves of subordinate plants had a higher N area than older leaves of dominant plants which were at the same height or slightly higher in the canopy. Consequently, the N area distribution patterns of individual plants plotted as a function of relative PFD were steeper, and probably closer to the optimal distribution which maximizes photosynthesis, than the average distribution in the stand. Leaves of subordinate plants had a lower mass per unit area (LMA) than those of dominant plants. In the dominant plants, LMA decreased with decreasing relative PFD (and with leaf position) while in the subordinate plants it increased. This surprising result for the subordinate plants can be explained by the fact that, during the course of a growing season, these plants became increasingly shaded and newer leaves were thus formed at progressively lower light availability. This indicates that LMA was strongly determined by the relative PFD at leaf formation and to a lesser extent by the current PFD. Leaf N content per unit mass (N mass) was strongly determined by leaf position independent of relative PFD. This indicates that N mass is strongly ontogenetically related to the leaf-aging process while changes in N area, in response to PFD, were regulated through changes in LMA. Received: 11 May 1997 / Accepted: 9 September 1997  相似文献   

13.
通过三种养分添加处理,氮添加(5、10和15 g??m-2)、磷添加(梯度同氮添加)、氮磷同时添加[(5 g N+5 g P)??m-2、(10 g N+10 g P)??m-2、(15 g N+15 g P)??m-2],对照(无养分添加),探讨养分添加对金露梅叶片性状氮含量(Nmas )、磷含量(Pmas )、氮磷比(N∶P)、比叶重(LMA)、净光合速率(Pn )和光合氮利用效率(PNUE)的影响,以及各性状之间的相互关系.结果表明:在处理水平上,除N或P显著提高金露梅叶片的N∶P外,氮、磷添加对叶片其它性状无显著影响;不同氮、磷处理下添加水平对金露梅叶片的Nmas、N∶P、Pn和PNUE均有显著影响,随着养分水平提高,各性状的变化模式各不相同,叶片Pmas无明显变化,而叶片LMA虽有降低的趋势但不显著.回归分析表明,叶片Pmas与Nmas之间呈显著正相关(R2=0.347,P<0.001),叶片Nmas 与N∶P之间也呈显著正相关(R2=0.018,P<0.05),而叶片Pmas与N∶P呈显著负相关(R2=0.505,P<0.001);叶片LMA与Pn之间显著负相关(R2=0.02,P<0.05),而与PNUE之间显著正相关(R2=0.077,P<0.001).这表明在一定范围内,环境变化可以改变金露梅叶片的养分保持能力、光合能力以及养分利用效率.  相似文献   

14.
Leaf nitrogen content per area (Narea) is a good indicator of assimilative capacity of leaves of deciduous broad-leaved trees. This study examined the degrees of increase in Narea in response to canopy openings as leaf mass per area (LMA) and leaf nitrogen content per mass (Nmass) in saplings of eight deciduous broad-leaved tree species in Hokkaido, northern Japan. Five of the species were well-branched species with a large number of small leaves (lateral-growth type), and the other three species were less-branched species with a small number of large leaves (vertical-growth type). The degrees of increase in Narea were compared between the two crown types. In closed-canopy conditions, leaves of the vertical-growth species tended to have a lower LMA and higher Nmass than those of the lateral-growth species, which resulted in similar Narea for both. LMA increased in canopy openings in the eight species, and the degrees of increase were not largely different between the lateral- and vertical-growth species. On the contrary, Nmass was unchanged in canopy openings in the eight species. As a result, Narea of each species increased in canopy openings in proportion to the increase in LMA, and the degrees of increase in Narea were similar in the lateral- and vertical-growth species. Therefore, this study showed that the degrees of increase in Narea were not correlated with the crown architecture (i.e., the lateral- and vertical-growth types).  相似文献   

15.
Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves. Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics.  相似文献   

16.
为探究木兰科(Magnoliaceae)常绿与落叶物种叶片构建的生理生态策略,选取黄山木兰(Yulaniacylindrica)、玉兰(Y.denudata)和鸡公山玉兰(Y. jigongshanensis) 3种落叶物种,以及荷花玉兰(Magnolia grandiflora)、含笑花(Michelia figo)、石碌含笑(M. shiluensis) 3种常绿物种,对其叶片构建成本和叶片寿命相关的性状进行比较。结果表明,木兰科3落叶种的单位叶片面积成本(CCarea)显著低于3常绿种,但落叶和常绿物种的叶片质量成本(CCmass)差异不显著。落叶物种的叶氮、磷含量(Nmass,Pmass)和比叶面积(SLA)均显著高于常绿物种,而叶片寿命(LLS)显著低于常绿物种。CCarea与LLS呈显著正相关,Nmass、Pmass和SLA均与LLS呈显著负相关。这说明木兰科玉兰属落叶物种单位面积叶片构建成本小于常绿物种;落叶物种叶片寿命短,但采取低成本构建策略,提高比叶面积获得更多光资源,增加营养积累,也揭示了玉兰属落叶物种适应北亚热带较短的生长季和较低水热条件的生理生态策略。  相似文献   

17.
Salzer J  Matezki S  Kazda M 《Oecologia》2006,147(3):417-425
Climbing plants are known to play an important role in tropical forest systems, but key features for their distribution are only partly understood. Investigation was carried out to find if climbers differ from self-supporting vegetation in their adjustment of leaf parameters over a wide variety of light regimes in different forest types along an altitudinal gradient. Relative photon flux density (PFDrel) was assessed above 75 pairs of strictly linked climbers and supporting vegetation on seven plots between 2,020 and 2,700 m a.s.l. along a mountain range in South-Ecuador up to the Páramo vegetation. Leaf samples from both growth forms were analyzed for leaf area (LA), specific leaf mass (LMA), mass and area-based carbon and nitrogen concentration (C, Carea, N, and Narea) and concentrations of P, K, Ca, Mg, Mn and Al. Leaf size of climbers was independent of general light condition, whereas the leaf size of the self-supporting vegetation increased in shade. LMA increased as expected with altitude and irradiance for both growth forms, but climbers generally built smaller leaves with lower LMA. N, P, and K concentrations were higher in the leaves of climbers than in their supporters. Relationships of LMA and Narea to the light conditions were more pronounced within the climbers than within their supporters. Slope for the regression between climber’s Narea and LMA was twice as steep as for the supporter leaves. Al accumulators were only found within the self-supporting vegetation. The investigated traits indicate improved adjustment towards light supply within climbers compared to self-supporting vegetation. Thus climbing plants seem to have a higher potential trade off in resource-use efficiency regarding irradiance and nutrients.  相似文献   

18.
叶片和根系是植物获取资源的最重要的器官,其性状随环境梯度的变化反映了植物光合碳获取和水分与养分的吸收能力及其对环境变化适应的生态对策。羌塘高原降水梯度带高寒草地群落叶片和根系成对性状关系研究不仅能揭示环境梯度对植物性状的塑造作用,也可为理解寒、旱和贫瘠等极端环境下植物的适应策略提供依据。为此,选择3组具有代表性的叶片和根系成对性状:比叶面积(SLA)和比根长(SRL);单位质量叶氮含量(LN_(mass))和单位质量根氮含量(RN_(mass));单位面积叶氮含量(LN_(area))和单位长度根氮含量(RN_(length)),分析不同优势植物地上、地下成对性状变异特征及其与环境因子的关系,探讨植物性状对高寒生态系统水分和养分限制因素的适应策略。研究表明,区域气候和土壤环境导致的叶片性状变异大于根系性状的变异,干旱端的植物既具有高的SRL,又具有高的叶片和根系的养分含量(LN_(mass),LN_(area)和RN_(mass))。SLA-SRL、LN_(mass)-RN_(mass)、LN_(area)-RN_(length)均表现为权衡关系,在干旱端(年降雨量MAP 400 mm)的高寒草原、荒漠草原和极湿润端(MAP 600 mm)的高寒草甸这种权衡关系更为明显,而中间区域(400 MAP 600 mm)的高寒草甸养分和水分限制不是很强烈,叶片和根系性状更多地表现出协同关系。从植物功能类群来看,苔草和禾草类植物叶片和根系成对性状之间具有更强烈的权衡关系。干旱端植物通过增加SRL和叶片、根系养分含量来提高水分和养分的吸收能力,同时通过叶片高的氮含量提高光合碳获取能力,保障了根系生长的物质来源,表现出地上和地下同时投入的策略。干旱端植物保持较高的养分含量是抵御和适应严酷的寒、旱和贫瘠的环境胁迫的重要策略。而在湿润端植物则采取增加SLA,维持地上光合生产力的生态策略。  相似文献   

19.
Paphiopedilum and Cypripedium are closely related in phylogeny, but have contrasting leaf traits and habitats. To understand the divergence in leaf traits of Paphiopedilum and Cypripedium and their adaptive significance, we analyzed the leaf anatomical structures, leaf dry mass per area (LMA), leaf lifespan (LL), leaf nitrogen concentration (N mass), leaf phosphorus concentration (P mass), mass-based light-saturated photosynthetic rate (A mass), water use efficiency (WUE), photosynthetic nitrogen use efficiency (PNUE) and leaf construction cost (CC) for six species. Compared with Cypripedium, Paphiopedilum was characterized by drought tolerance derived from its leaf anatomical structures, including fleshy leaves, thick surface cuticles, huge adaxial epidermis cells, lower total stoma area, and sunken stomata. The special leaf structures of Paphiopedilum were accompanied by longer LL; higher LMA, WUE, and CC; and lower N mass, P mass, A mass, and PNUE compared with Cypripedium. Leaf traits in Paphiopedilum helped it adapt to arid and nutrient-poor karst habitats. However, the leaf traits of Cypripedium reflect adaptations to an environment characterized by rich soil, abundant soil water, and significant seasonal fluctuations in temperature and precipitation. The present results contribute to our understanding of the divergent adaptation of leaf traits in slipper orchids, which is beneficial for the conservation of endangered orchids.  相似文献   

20.
In order to explore ontogenetic variation in leaf-level physiological traits of Betula pendula trees, we measured changes in mass- (A mass) and area-based (A area) net photosynthesis under light-saturated conditions, mass- (RSmass) and area-based (RSarea) leaf respiration, relative growth rate, leaf mass per area (LMA), total nonstructural carbohydrates (TNC), and macro- and micronutrient concentrations. Expanding leaves maintained high rates of A area, but due to high growth respiration rates, net CO2 fixation occurred only at irradiances >200 μmol photons m–2 s–1. We found that full structural leaf development is not a necessary prerequisite for maintaining positive CO2 balance in young birch leaves. Maximum rates of A area were realized in late June and early July, whereas the highest values of A mass occurred in May and steadily declined thereafter. The maintenance respiration rate averaged ≈8 nmol CO2 g–1 s–1, whereas growth respiration varied between 0 and 65 nmol CO2 g–1 s–1. After reaching its lowest point in mid-June, leaf respiration increased gradually until the end of the growing season. Mass and area-based dark respiration were significantly positively correlated with LMA at stages of leaf maturity, and senescence. Concentrations of P and K decreased during leaf development and stabilized or increased during maturity, and concentrations of immobile elements such as Ca, Mn and B increased throughout the growing season. Identification of interrelations between leaf development, CO2 exchange, TNC and leaf nutrients allowed us to define factors related to ontogenetic variation in leaf-level physiological traits and can be helpful in establishing periods appropriate for sampling birch leaves for diagnostic purposes such as assessment of plant and site productivity or effects of biotic or abiotic factors. Received: 29 December 1998 / Accepted: 26 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号