首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叶脉网络功能性状及其生态学意义   总被引:6,自引:0,他引:6       下载免费PDF全文
叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。  相似文献   

2.
Trade-offs between plant leaf hydraulic and economic traits   总被引:1,自引:0,他引:1       下载免费PDF全文
《植物生态学报》2015,39(10):1021
Leaf is the most important organ for carbon-water coupling of a plant because it is the primary medium for photosynthesis. It also acts as the hydraulic bottleneck and safety valve against hydraulic catastrophic dysfunctions. The leaf economics spectrum, which reflects the balance between investments and returns of leaf economic traits, provides a useful framework for examining species strategies as shaped by their evolutionary history. Changes in leaf hydraulic traits will influence leaf economic traits as well as plant survival and growth. Exploring trade-offs between leaf hydraulic and economic traits is thus of significance for modeling carbon-water relations, understanding the mechanisms of water/carbon investments, and extending the leaf economic spectrum. In this review, we first examined the trade-offs between leaf hydraulic and economic traits. Specially, we analyzed the relationships between leaf hydraulic conductivity and hydraulic vulnerability, water potential at the turgor loss point, water capacitance, safety margin, and leaf morphological, structural and functional traits. We then discussed potential mechanisms regulating leaf hydraulic and economic traits from leaf morphology, anatomy, venation, and stomatal functions. Finally, we proposed future research to: (1) develop an integrated whole-plant economics spectrum, including carbon-nitrogen-water resources and root-stem-leaf hydraulic transport system that will help revealing ecophysiological mechanisms of plant structure-functional coupling, carbon sequestration and water use; (2) explore a generalized trade-offs among leaf hydraulic safety, hydraulic efficiency and carbon fixation efficiency to advance our understanding of the relationships between biophysical structure and physiological metabolism in plant leaf construction under drought stress; and (3) explore the carbon-water metabolic relationship and coupling of water transport and growth rate for the metabolic theory and predictions at community scale.  相似文献   

3.
植物叶片水力与经济性状权衡关系的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
金鹰  王传宽 《植物生态学报》2015,39(10):1021-1032
叶片既是植物光合产物形成的主要场所, 又是整株植物的水力瓶颈、应对灾难性水力失调的安全阀门, 是植物碳水耦合权衡的重要器官。叶经济型谱反映了叶片经济性状“投资-收益”的权衡, 为验证植物进化过程中形成的物种对策提供了适用的理论框架。叶片水力性状变化会影响叶片经济性状及植物存活和生长。因此, 探索植物叶片水力与经济性状的权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展植物性状型谱等均有重要意义。该文首先综述了叶片水力性状、经济性状及两者之间的权衡关系, 分析了叶片导水率与水力脆弱性、失膨点水势、水容、安全阈值等水力性状以及与叶片的形态、结构和气体交换功能性状之间的关系。然后, 从叶片形态、解剖和叶脉网络结构以及气孔功能方面探讨了叶片水力性状与经济性状的调节机制。最后, 提出今后应加强三方面的研究: (1)探索建立植物根-茎-叶水力输导系统的碳-氮-水资源的整株经济型谱, 以揭示植物功能结构耦合、高效固碳用水的生理生态学机制; (2)探索叶片水力安全、水力效率和固碳效率之间的普适性权衡关系, 以深入理解抗旱植物叶片构建的生物物理结构与生理代谢的关系; (3)探索个体水平碳水代谢关系、水分运输与生长速率的耦合, 为代谢推演理论和植物群落尺度预测提供基础。  相似文献   

4.
The leaf economic traits such as leaf area, maximum carbon assimilation rate, and venation are all correlated and related to water availability. Furthermore, leaves are often broad and large in humid areas and narrower in arid/semiarid and hot and cold areas. We use optimization theory to explain these patterns. We have created a constrained optimization leaf model linking leaf shape to vein structure that is integrated into coupled transpiration and carbon assimilation processes. The model maximizes net leaf carbon gain (NPPleaf) over the loss of xylem water potential. Modeled relations between leaf traits are consistent with empirically observed patterns. As the results of the leaf shape–venation relation, our model further predicts that a broadleaf has overall higher NPPleaf compared to a narrowleaf. In addition, a broadleaf has a lower stomatal resistance compared to a narrowleaf under the same level of constraint. With the same leaf area, a broadleaf will have, on average, larger conduits and lower total leaf xylem resistance and thus be more efficient in water transportation but less resistant to cavitation. By linking venation structure to leaf shape and using water potential as the constraint, our model provides a physical explanation for the general pattern of the covariance of leaf traits through the safety–efficiency trade‐off of leaf hydraulic design.  相似文献   

5.
厘清叶片功能性状的变异及性状间的权衡关系,对揭示植物对环境变化的响应及适应策略具有重要意义。以中亚热带柯(Lithocarpus glaber)-青冈(Cyclobalanopsis glauca)常绿阔叶林为对象,测量了1 hm2固定监测样地内6个优势树种的叶面积(LA)、比叶面积(SLA)、干物质含量(LDMC)、叶片厚度(LT)、叶片碳(LC)、叶片氮(LN)、叶片磷(LP)含量和叶片碳氮比(LCLN)8个功能性状,采用多重比较、主成分分析(PCA)法分析了群落叶片功能性状的生活型、种内和种间变异及性状间关系。结果表明:(1)群落内叶片功能性状种内、种间差异显著,变异中等(CV: 0.02-0.59),其结构性状的可塑性较化学性状保守,变异格局符合"性状空间变异分割假说";针叶树种的LA、SLA显著低于阔叶树种,常绿树种的LC和LDMC最小,而落叶树种的SLA、LNLP最大以及LTLCLN最小。(2)群落叶片功能性状变异主要来源于生活型和种间变异,种内变异亦有显著贡献;生活型对多数性状的贡献率较大,其对LDMC、LCLN的贡献分别高达93.11%和91.76%;种间变异(LDMC除外)对结构性状的贡献率均高于化学性状;种内变异对LP的贡献率(23.66%)较种间变异高。(3)叶片性状之间多表现出显著相关关系,针叶树和阔叶树在PCA排序图中聚集于不同区域,叶经济型谱在柯-青冈群落中具有适用性。不同树种通过叶片结构、化学性状之间的权衡策略来适应环境变化,从而实现群落物种共存。结果可为理解森林群落物种的环境适应策略、预测群落动态变化和制定植被恢复措施提供科学依据。  相似文献   

6.
植物经济谱能够阐述维管植物在资源获取和储存之间的权衡策略, 为理解生态位分化和物种共存机制等提供科学依据。该研究通过对武夷山49种木本植物的单叶面积(ILA)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)和叶磷含量(LPC)等5个叶片性状以及根组织密度(RTD)、比根长(SRL)、比根面积(SRA)、根碳含量(RCC)、根氮含量(RNC)和根磷含量(RPC)等6个细根性状进行测定, 探讨木本植物叶片与细根经济谱是否存在以及常绿和落叶物种间的植物经济谱差异。结果表明: 沿着性状贡献率相对较大的PC1轴, 能够定义出叶经济谱(LES)、根经济谱(RES)和整株植物经济谱(WPES)。大部分常绿物种分布在经济谱保守的一侧, 而大部分落叶物种聚集在获取的一侧。此外, 叶片PC1、细根PC1和整株植物PC1的两两得分之间均存在显著正相关关系, 常绿和落叶物种具有共同的异速指数, 但不存在共同的异速常数。这些结果揭示了亚热带物种叶片与细根的策略遵循着WPES的协调整合, 表明叶片、细根以及整株植物之间是采取协同变化的资源策略, 而分布于经济谱两端的常绿和落叶物种则是通过不同的方式来构建WPES。  相似文献   

7.
吴一苓  李芳兰  胡慧 《植物学报》2022,57(3):388-398
叶脉由贯穿于叶肉内部的维管组织及其外围机械组织构成, 多样化的脉序及网络结构使叶脉系统发生变异和功能分化。该文综述了叶脉系统结构与功能的最新研究进展。通过聚焦叶脉分级系统的结构与功能及其在叶片经济谱(LES)中的重要性, 解释叶脉性状与其它叶片功能性状之间的关系及机制。不同等级叶脉在机械支撑与水分运输方面存在功能分化, 其中1-3级粗脉在维持叶片形状和叶表面积以及物理支撑方面发挥重要作用, 有利于维持叶片最大受光面积; 4级及以上细脉具有水分调节功能, 它们与气孔相互协调, 影响叶片水分运输、蒸腾散热和光合作用速率。叶片生长过程与叶脉发育的动态变化模式决定叶脉密度, 并影响叶脉密度与叶片大小之间的关系: 叶面积与粗脉密度呈显著负相关, 与粗脉直径呈显著正相关, 而与细脉密度无关。与叶脉性状相关的叶片经济谱框架模型预测, 叶脉密度较高的叶片寿命短、比叶重较小, 叶片最大碳同化速率、代谢速率以及资源获取策略潜力较高。  相似文献   

8.
罗丽莹  陈楠  王云龙  王光军 《生态学报》2021,41(19):7838-7847
植物叶形态与叶脉网络功能性状的协同变异与权衡关系,对深入理解植物叶脉网络功能性状对环境变异的生态适应,以及预测植物物种生活习性对城市化过程的响应具有重要意义。闽楠作为珍贵的常绿阔叶树种,正在城市绿化中逐步推广。针对不同生长环境中(行道与植物园混交林)的闽楠,开展了叶形态与叶脉网络功能性状关系对城市生长环境的响应研究。研究结果表明:闽楠叶性状值基本满足正态分布,各性状变异系数保持在10%-20%之间,群体内性状变异较为丰富,单因素方差分析表明两种环境对叶形态性状的影响比叶脉网络系统的影响更明显;两种生长环境下闽楠叶形态性状组与叶脉网络功能性状组都具有极显著相关性,行道和植物园混交林典型性相关系数分别为0.804和0.795,叶形态性状与叶脉直径呈显著正相关,形态性状、叶脉直径与初级脉密度呈显著负相关;闽楠在响应城市生长环境的过程中呈现出相应的经济权衡机制,行道环境中闽楠以较大的初级脉密度和较小叶面积来确保水分获取和光合之间的平衡,植物园闽楠则采用较低初级叶脉密度、较高叶面积和叶脉直径的叶形态和叶脉网络构建模式。在选择闽楠作为城市绿化树种时,可将叶片形态性状组与叶脉网络功能性状组的协同变化和权衡关系作为选种依据,以提高闽楠在城市环境中的成活率和适应性。  相似文献   

9.
Leaf carbon capture strategies of native and exotic invasive plants were compared by examining leaf traits and their scaling relationships at community and global scales. Community-level leaf trait data were obtained for 55 vascular plant species from nutrient-enriched and undisturbed bushland in Sydney, Australia. Global-scale leaf trait data were compiled from the literature for 75 native and 90 exotic invasive coexisting species. At the community level, specific leaf area (SLA), foliar nitrogen and phosphorus (N(mass) and P(mass)) and N:P ratio were significantly higher for exotics at disturbed sites compared with natives at undisturbed sites, with natives at disturbed sites being intermediate. SLA, N(mass) and P(mass) were positively correlated, with significant shifts in group means along a common standardized major axis (SMA) slope. At the global scale, invasives had significantly higher N(mass), P(mass), assimilation rate (A(mass) and A(area)) and leaf area ratio (LAR) than natives. All traits showed positive correlations, with significant shifts in group means along a common slope. For a given SLA, invasives had higher A(mass) (7.7%) and N(mass) (28%). Thus, exotic invasives do not have fundamentally different carbon capture strategies from natives but are positioned further along the leaf economics spectrum towards faster growth strategies. Species with leaf traits enabling rapid growth will be successful invaders when introduced to novel environments where resources are not limited.  相似文献   

10.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

11.
The leaves of angiosperms contain highly complex venation networks consisting of recursively nested, hierarchically organized loops. We describe a new phenotypic trait of reticulate vascular networks based on the topology of the nested loops. This phenotypic trait encodes information orthogonal to widely used geometric phenotypic traits, and thus constitutes a new dimension in the leaf venation phenotypic space. We apply our metric to a database of 186 leaves and leaflets representing 137 species, predominantly from the Burseraceae family, revealing diverse topological network traits even within this single family. We show that topological information significantly improves identification of leaves from fragments by calculating a “leaf venation fingerprint” from topology and geometry. Further, we present a phenomenological model suggesting that the topological traits can be explained by noise effects unique to specimen during development of each leaf which leave their imprint on the final network. This work opens the path to new quantitative identification techniques for leaves which go beyond simple geometric traits such as vein density and is directly applicable to other planar or sub-planar networks such as blood vessels in the brain.  相似文献   

12.
Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.  相似文献   

13.
Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraulic supply (vein density) and evaporative demand. To test this, we compared the function and anatomy of leaf hydraulic systems in the leaves of a woody angiosperm (Toona ciliata M. Roem.) grown under high and low irradiance in controlled conditions. Our results confirm that in this species, differential leaf expansion regulates the density of veins and stomata such that leaf hydraulic conductance and stomatal conductance remain proportional. A broader sample of field-grown tree species suggested that differences in leaf venation and stomatal traits induced by sun and shade were not regulated by leaf size in all cases. Our results, however, suggest that leaf size plasticity can provide an efficient way for plants to acclimate hydraulic and stomatal conductances to the contrasting evaporative conditions of sun and shade.  相似文献   

14.
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.  相似文献   

15.
自2007年三峡大坝试运行以来,其独特的人工水位调度节律给当地的水库消落带生态系统带来了巨大的负面影响。植物功能性状可以反映某一特殊生境植物的生理生态过程特殊性,是指示生态系统结构与功能的有效指标。因此,在三峡水库消落带形成2a后,于2009年调查了消落带的42种适生植物以及对照带33种植物的6个叶片功能性状:最大净光合速率(Amax)、叶片气孔导度(Gs)、比叶重(LMA)、叶片全氮含量(Nmass)、全磷含量(Pmass)和全钾含量(Kmass)。运用标准化主轴回归分析对消落带植物叶片各功能性状之间关系进行分析,并对照全球尺度叶片功能性状数据库,旨在说明反季节淹水对消落带植物叶片功能性状之间关系与全球尺度对比发生了哪些变化。同时,运用成对方差t检验的分析方法,对比了在消落带和对照带都存在的33个种的叶片光合与营养性状之间的差异,以阐明消落带植物对消落带特殊生境的生理响应。结果表明:(1)消落带植物叶片各性状关系呈现出与全球尺度基本一致的格局,表现出植物叶性状之间关系的趋同性;(2)消落带植物Amass、Nmass、Pmass和Kmass显著高于全球尺度,而LMA则显著低于全球尺度。处于驯化阶段的消落带植物各叶片性状处在全球叶片经济型谱"低投入-快速回收"的一端。(3)消落带植物叶片Amass与对照带相比,有显著提高。表明三峡水库消落带植物叶片光合能力得到显著提高,这可能是其适应消落带特殊生境的关键生理生态对策之一。  相似文献   

16.
A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co‐occurring species in a subtropical forest. Size‐related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species‐average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low‐density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource‐rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to resource‐use strategies, which dictate the demography and distributions of species.  相似文献   

17.
以漓江水陆交错带为研究区,分两个条带分别量测了适生植物的5个叶性状指标:最大净光合速率(A_(max))、比叶重(LMA)、单位质量叶片全氮含量(N_(mass))、单位质量叶片全磷含量(P_(mass))、单位质量叶片全钾含量(K_(mass))。研究重度淹没带与微度淹没带不同功能型植物叶性状间的差异,分析并讨论重度淹没带叶性状间的关系与全球尺度是否存在差异,探究重度淹没带植物对水淹生境的生理响应机制。结果如下:(1)重度淹没带植物叶片的A_(mass)、N_(mass)、P_(mass)显著高于微度淹没带。(2)乔木、灌木叶片的LMA均显著高于草本植物,而A_(mass)、PPUE均显著低于草本植物。(3)重度淹没带草本叶性状指标的N_(mass)、P_(mass)、PNUE均显著高于微度微度淹没带,而乔木、灌木的叶性状在两个条带的差异则不显著。(4)重度淹没带植物叶性状关系与全球尺度基本一致,其植物叶片具有低LMA,高A_(mass)、Nmas s、P_(mass)。分析可知,重度淹没带植物在出露期提高叶片光合效率及相关营养水平可能是其适应水淹胁迫特殊生境的关键策略之一;不同功能型植物对同一环境的适应能力存在一定的差异,草本对于水淹环境的响应更为积极,适应能力更好;重度淹没带也存在叶经济谱,其植物在经济谱中属于"快速投资-收益"型物种。  相似文献   

18.
Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical‐subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water‐use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.  相似文献   

19.
? Premise of the study: Specific leaf area (SLA) is a critical component of the leaf economics spectrum, and many functional leaf traits have been empirically demonstrated to covary with SLA. However, a complete understanding of how change in leaf size influences SLA has not yet emerged. ? Methods: To help develop a more complete understanding of the determinants of variability in SLA, we present a covariation model of leaf allometry that predicts a zero-sum interdependence of leaf thickness, density, and surface area on leaf mass. We test the model's predictions on measurements of 900 leaves from 44 angiosperm species. ? Key results: We observe that "diminishing returns," the negative allometry (slope < 1) of surface area versus mass, does not hold universally across species. Rather, the scaling of SLA is linked to the relative allocation to thickness and density. Specifically, diminishing returns are observed when leaves grow thicker, more than their density decreases, with increasing mass. Finally, we confirm model predictions that the allometric dependence of area, thickness, and density on mass can be well approximated by a zero-sum allocational process. ? Conclusions: Our work adds to the growing body of evidence that allometric covariation is a hallmark of the scaling behavior of complex plant and leaf traits. Moreover, because our model makes predictions based on allocational constraints, it provides a foundation to understand how deviations from zero-sum tradeoffs in allocation to leaf thickness, density, or area determine the allometry of SLA and, ultimately, underlie adaptive strategies within and across plant species.  相似文献   

20.

Key message

Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.

Abstract

The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号